A227208 Largest number in an integer 7-tuple (a, b, c, d, e, f, g) satisfying the Markoff(7) equation a^2+b^2+c^2+d^2+e^2+f^2+g^2 = a*b*c*d*e*f*g.
3, 5, 10, 18, 23, 37, 39, 58, 67, 119, 138, 178, 181, 250, 274, 307, 338, 359, 515, 551, 738, 778, 933, 1157, 1418, 1425, 1479, 1559, 1738, 1762, 1922, 1970, 2410, 2417, 3265
Offset: 1
Keywords
Examples
3 and 5 are in the sequence since (3, 2, 2, 2, 1, 1, 1) and (5, 2, 2, 2, 1, 1, 1) satisfy a^2+b^2+c^2+d^2+e^2+f^2+g^2 = a*b*c*d*e*f*g with a >= b >= c >= d >= e >= f >= g.
Crossrefs
Cf. A002559.