cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A227211 Generalized Markoff numbers: largest of 6-tuple of positive numbers a, b, c, d, e, f, g satisfying the Markoff(7) equation a^2+b^2+c^2+d^2+e^2+f^2+g^2 = 3abcdefg.

Original entry on oeis.org

3, 7, 17, 18, 47, 62, 99, 123, 151, 305, 322, 377, 551, 577, 843, 1299, 1342, 2207, 2537, 3363, 3905, 4897, 5047, 5473, 5778, 7698, 7899, 10097, 11927, 15127, 17342, 19601, 20351, 23102, 27217, 31107, 39603, 43522, 46663, 93329, 98209
Offset: 1

Views

Author

Shanzhen Gao, Sep 19 2013

Keywords

Examples

			a(1)=3 and a(2)=7 since (3, 2, 1, 1, 1, 1, 1) and (7, 3, 1, 1, 1, 1, 1) satisfying a^2+b^2+c^2+d^2+e^2+f^2+g^2=3abcdefg with a>=b>=c>=d>=e>=f>=g. a(n) is the first components among all solutions in increasing order.
		

Crossrefs

A227212 Generalized Markoff numbers: largest of 7-tuple of positive numbers a, b, c, d, e, f, g satisfying the Markoff(7) equation a^2+b^2+c^2+d^2+e^2+f^2+g^2 = 5abcdefg.

Original entry on oeis.org

2, 3, 9, 14, 43, 67, 89, 206, 209, 321, 881, 987, 1538, 1934, 3121, 4003, 4689, 4729, 7369, 8009, 8721, 14627, 22658, 35307, 43889, 44289, 46606, 86329, 86987
Offset: 1

Views

Author

Shanzhen Gao, Sep 19 2013

Keywords

Examples

			a(1)=2 and a(2)=3 since (2, 1, 1, 1, 1, 1, 1) and (3, 1, 1, 1, 1, 1, 1) satisfying a^2+b^2+c^2+d^2+e^2+f^2+g^2=5abcdefg.
		

Crossrefs

A227214 Generalized Markoff numbers: largest of 7-tuple of positive numbers a, b, c, d, e, f, g satisfying the Markoff(7) equation a^2+b^2+c^2+d^2+e^2+f^2+g^2 = 7abcdefg.

Original entry on oeis.org

1, 6, 41, 281, 1721, 1926, 13201, 72241, 80646, 90481, 493921, 620166, 2963561, 3032401, 3788441, 4250681, 23145121, 29134601, 127288601, 141753606, 158630641, 177975881, 199691526, 870287321
Offset: 1

Views

Author

Shanzhen Gao, Sep 19 2013

Keywords

Comments

For n = 1, 2, 3, 4, 6, 7, 10, 12, 16, 18, 23, a(n) is in A049685.

Examples

			a(1)=1 and a(2)=6 since (1, 1, 1, 1, 1, 1, 1) and (6, 1, 1, 1, 1, 1, 1) satisfying a^2+b^2+c^2+d^2+e^2+f^2+g^2=7abcdefg.
		

Crossrefs

Showing 1-3 of 3 results.