cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227217 Primes p such that p + (product of digits of p) is prime and p - (product of digits of p) is prime.

Original entry on oeis.org

23, 29, 83, 101, 103, 107, 109, 293, 307, 347, 349, 401, 409, 431, 439, 503, 509, 601, 607, 653, 659, 677, 701, 709, 743, 809, 907, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1123, 1201, 1297, 1301, 1303, 1307, 1409, 1423, 1489, 1523
Offset: 1

Views

Author

Derek Orr, Sep 19 2013

Keywords

Comments

Intersection of A157677 and A225319.
Contains A056709. - Robert Israel, Apr 13 2015

Examples

			431 is prime, 431 + (4*3*1) = 443 is prime, and 431 - (4*3*1) = 419 is prime. So, 431 is a term in the sequence.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local m;
      if not isprime(n) then return false fi;
      m:= convert(convert(n,base,10),`*`);
      if m = 0 then return true fi;
      isprime(n+m) and isprime(n-m)
    end proc:
    select(filter, [seq(2*i+1,i=5..10000)]); # Robert Israel, Apr 13 2015
  • Mathematica
    fQ[n_] := Block[{d = IntegerDigits@ n}, PrimeQ[n + Times @@ d] && PrimeQ[n - Times @@ d]]; Select[Prime@ Range@ 250, fQ] (* Michael De Vlieger, Apr 12 2015 *)
  • PARI
    forprime(p=1,2000,d=digits(p);P=prod(i=1,#d,d[i]);if(isprime(p+P)&&isprime(p-P),print1(p,", "))) \\ Derek Orr, Apr 10 2015
  • Python
    from sympy import isprime, primerange
    def DP(n):
        p = 1
        for i in str(n):
            p *= int(i)
        return p
    for pn in primerange(1, 2000):
        dpn = DP(pn)
        if isprime(pn-dpn) and isprime(pn+dpn):
            print(pn, end=', ')
    # Simplified by Derek Orr, Apr 10 2015
    
  • Sage
    [p for p in primes_first_n(1000) if ((p-prod(Integer(p).digits(base=10))) in Primes() and (p+prod(Integer(p).digits(base=10))) in Primes())] # Tom Edgar, Sep 19 2013
    

Extensions

More terms from Derek Orr, Apr 10 2015