A227257 Number of Hamiltonian circuits in a 2n X 2n square lattice of nodes, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 4 elements.
0, 1, 24, 1760, 411861, 551247139, 2883245852086, 85948329517780776, 11001968794030973784902, 7462399462450938863305238264
Offset: 1
Examples
When n = 2, there is only 1 Hamiltonian circuit in a 4 X 4 square lattice, where the orbits under the symmetry group of the square have 4 elements. The 4 elements are: o__o__o__o o__o__o__o o__o__o__o o__o o__o | | | | | | | | | | o o__o__o o o__o o o__o__o o o o o o | | | | | | | | | | | | o o__o__o o o o o o__o__o o o o__o o | | | | | | | | | | o__o__o__o o__o o__o o__o__o__o o__o__o__o
Links
- Giovanni Resta, Simple C program for computing a(1)-a(4)
- Ed Wynn, Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs, arXiv:1402.0545 [math.CO], 2014.
Formula
Extensions
a(4) from Giovanni Resta, Jul 11 2013
a(5)-a(10) from Ed Wynn, Feb 05 2014