A227261 Number of n X 4 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 5 binary array having a sum of two or less, with rows and columns of the latter in lexicographically nondecreasing order.
5, 50, 353, 2201, 11932, 57146, 244818, 951917, 3403038, 11297855, 35123154, 102968348, 286360987, 759331583, 1928166887, 4706232142, 11076831313, 25210805133, 55622829033, 119222502647, 248739253915, 506020952898
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..0..0....1..1..1..0....1..1..0..0....1..1..1..0....1..1..1..1 ..1..1..1..0....1..1..0..0....1..0..0..0....1..1..1..0....1..1..1..0 ..1..1..1..1....1..0..0..0....1..0..1..1....1..1..1..0....0..0..0..0 ..1..1..1..1....1..1..0..0....1..0..1..1....1..0..1..1....0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A227263.
Formula
Empirical: a(n) = (1/1689515283456000)*n^19 + (43/1067062284288000)*n^18 + (1/1097800704000)*n^17 + (1/24908083200)*n^16 + (2161/2615348736000)*n^15 + (7723/10461394944000)*n^14 + (76931/201180672000)*n^13 + (38351/48283361280)*n^12 - (9767641/402361344000)*n^11 + (9434683/6967296000)*n^10 - (3668820107/402361344000)*n^9 - (5124736597/80472268800)*n^8 + (150774753091/72648576000)*n^7 - (42587741190289/3923023104000)*n^6 - (18276563116219/163459296000)*n^5 + (6577553955799/3113510400)*n^4 - (743180805841567/51459408000)*n^3 + (63341814516853/1286485200)*n^2 - (326223749821/4476780)*n + 17722 for n>9.
Comments