A227272 T(n,k,r) is the total number of parts in the set of partitions of an n X k X r rectangular cuboid into integer-sided cubes, considering only the list of parts; irregular triangle T(n,k,r), n >= k >= r >= 1, read by rows.
1, 2, 4, 9, 3, 6, 17, 9, 29, 48, 4, 8, 27, 12, 51, 97, 16, 90, 192, 363, 5, 10, 39, 15, 69, 145, 20, 130, 311, 685, 25, 180, 459, 1056
Offset: 1
Examples
The irregular triangle begins: . r 1 2 3 4 ... n,k 1,1 1 2,1 2 2,2 4 9 3,1 3 3,2 6 17 3,3 9 29 48 4,1 4 4,2 8 27 4,3 12 51 97 4,4 16 90 192 363 5,1 5 5,2 10 39 5,3 15 69 145 5,4 20 130 311 685 5,5 25 180 459 1056 ... ... T(2,2,2) = 9 because a 2 X 2 X 2 rectangular cuboid has 2 partitions, (8 1 X 1 X 1 squares) and (1 2 X 2 X 2 square) with 9 parts in total.
Links
- Christopher Hunt Gribble, C++ program
Crossrefs
Cf. A225622.
Formula
T(n,k,1) = n*k.
T(n,2,2) = (n+1)(n+2) - 3.