This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227291 #50 Nov 27 2024 15:04:43 %S A227291 1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0, %T A227291 0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %U A227291 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 %N A227291 Characteristic function of squarefree numbers squared (A062503). %H A227291 Antti Karttunen, <a href="/A227291/b227291.txt">Table of n, a(n) for n = 1..100000</a> (first 10000 terms from Reinhard Zumkeller) %H A227291 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a> %H A227291 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A227291 Dirichlet g.f.: zeta(2s)/zeta(4s) = prod[prime p: 1+p^(-2s) ], see A008966. %F A227291 a(n) = A008966(A037213(n)), when assumed A008966(0) = 0. - _Reinhard Zumkeller_, Jul 07 2013 %F A227291 a(n) = A063524(sum(A225817(n,k)*A225817(n,A000005(n)+1-k): k=1..A000005(n))). - _Reinhard Zumkeller_, Aug 01 2013 %F A227291 Multiplicative with a(p^e) = 1 if e=2, a(p^e) = 0 if e=1 or e>2. - _Antti Karttunen_, Jul 28 2017 %F A227291 Sum_{k=1..n} a(k) ~ 6*sqrt(n) / Pi^2. - _Vaclav Kotesovec_, Feb 02 2019 %F A227291 a(n) = A225569(A225546(n)-1). - _Peter Munn_, Oct 31 2019 %F A227291 From _Antti Karttunen_, Jul 18 2022: (Start) %F A227291 a(n) = A010052(n) * A008966(A000196(n)). %F A227291 a(n) = Sum_{d|n} A008836(n/d) * A307430(d). %F A227291 a(n) = Sum_{d|n} A007427(n/d) * A322327(d). %F A227291 (End) %e A227291 a(3) = 0 because 3 is not the square of a squarefree number. %e A227291 a(4) = 1 because sqrt(4) = 2, a squarefree number. %p A227291 A227291 := proc(n) %p A227291 local pe; %p A227291 if n = 0 then %p A227291 1; %p A227291 else %p A227291 for pe in ifactors(n)[2] do %p A227291 if op(2,pe) <> 2 then %p A227291 return 0 ; %p A227291 end if; %p A227291 end do: %p A227291 end if; %p A227291 1 ; %p A227291 end proc: %p A227291 seq(A227291(n),n=1..100) ; # _R. J. Mathar_, Feb 07 2023 %t A227291 Table[Abs[Sum[MoebiusMu[n/d], {d,Select[Divisors[n], SquareFreeQ[#] &]}]], {n, 1, 200}] (* _Geoffrey Critzer_, Mar 18 2015 *) %t A227291 Module[{nn=120,len,sfr},len=Ceiling[Sqrt[nn]];While[!SquareFreeQ[len],len++];sfr=(Select[Range[len],SquareFreeQ])^2; Table[If[MemberQ[ sfr,n],1,0],{n,nn}]] (* _Harvey P. Dale_, Nov 27 2024 *) %o A227291 (PARI) a(n)=if(n<1, 0, direuler(p=2, n, 1+X^2)[n]) %o A227291 (PARI) A227291(n) = factorback(apply(e->(2==e), factor(n)[,2])); \\ _Antti Karttunen_, Jul 14 2022 %o A227291 (PARI) A227291(n) = (issquare(n) && issquarefree(sqrtint(n))); \\ _Antti Karttunen_, Jul 14 2022 %o A227291 (Haskell) %o A227291 a227291 n = fromEnum $ (sum $ zipWith (*) mds (reverse mds)) == 1 %o A227291 where mds = a225817_row n %o A227291 -- _Reinhard Zumkeller_, Jul 30 2013, Jul 07 2013 %o A227291 (Scheme) (define (A227291 n) (if (= 1 n) n (* (if (= 2 (A067029 n)) 1 0) (A227291 (A028234 n))))) ;; _Antti Karttunen_, Jul 28 2017 %Y A227291 Cf. A000196, A007427, A008836, A008683, A008966, A010052, A027750, A037213, A225546, A225569, A225817, A307430, A322327, A355448. %Y A227291 Absolute values of A271102. %K A227291 nonn,mult,easy %O A227291 1,1 %A A227291 _Ralf Stephan_, Jul 05 2013