cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227309 G.f.: 1/G(0) where G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 19, 34, 63, 115, 213, 391, 723, 1333, 2463, 4547, 8403, 15522, 28686, 53006, 97963, 181042, 334606, 618415, 1142994, 2112545, 3904592, 7216810, 13338856, 24654268, 45568784, 84225393, 155675230, 287737327, 531830605, 982993368, 1816887637, 3358192905
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2013

Keywords

Comments

Sums along falling diagonals of A161492 (skew Ferrers diagrams by area and number of columns). [Joerg Arndt, Mar 23 2014]

Crossrefs

Cf. A049346 (g.f.: 1-1/G(0), G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A227310 (g.f.: 1/G(0), G(k) = 1 + (-q)^(k+1) / (1 - (-q)^(k+1)/G(k+1) ) ).
Cf. A226728 (g.f.: 1/G(0), G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A226729 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A006958 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(Range[2, nmax] - Floor[Range[2, nmax]/2])]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 - q^(k+1) / (1 - q^(k+2) / G(k+1) ) );
    Vec( 1 / G(0) )
    
  • PARI
    /* formula from the Delest/Fedou reference with t=q: */
    N=66;  q='q+O('q^N);  t=q;
    qn(n) = prod(k=1, n, 1-q^k );
    nm = sum(n=0, N, (-1)^n* q^(n*(n+1)/2) / ( qn(n) * qn(n+1) ) * (t*q)^(n+1) );
    dn = sum(n=0, N, (-1)^n* q^(n*(n-1)/2) / ( qn(n)^2 ) * (t*q)^n );
    v=Vec(nm/dn)

Formula

G.f.: 1/(1-q /(1-q^2/(1-q^2/(1-q^3/(1-q^3/(1-q^4/(1-q^4/(1-q^5/(1-q^5/(1-...) )) )) )) )) ).
G.f.: 1/x - Q(0)/(2*x), where Q(k)= 1 + 1/(1 - 1/(1 - 1/(2*x^(k+1)) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 09 2013
G.f.: 1/x - U(0)/x, where U(k)= 1 - x^(k+1)/(1 - x^(k+1)/U(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 15 2013
G.f.: -W(0)/x, where W(k)= 1 - x^(k+1) - x^k - x^(2*k+2)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Aug 15 2013
G.f.: G(0) where G(k) = 1 - q/(q^(k+2) - 1 / G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 18 2016
a(n) ~ c * d^n, where d = 1.84832326133106924642685135202616091890310896530577301386219207630312784... and c = 0.244648950328338656997216931963422920467577616734159139510762093105072... - Vaclav Kotesovec, Sep 05 2017