A227310 G.f.: 1/G(0) where G(k) = 1 + (-q)^(k+1) / (1 - (-q)^(k+1)/G(k+1) ).
1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 3, 2, 3, 4, 4, 6, 7, 8, 11, 13, 16, 20, 24, 31, 37, 46, 58, 70, 88, 108, 133, 167, 204, 252, 315, 386, 479, 594, 731, 909, 1122, 1386, 1720, 2124, 2628, 3254, 4022, 4980, 6160, 7618, 9432, 11665, 14433, 17860, 22093, 27341, 33824, 41847, 51785, 64065, 79267
Offset: 0
Keywords
Examples
From _Joerg Arndt_, Mar 08 2014: (Start) The a(21) = 7 rough sandpiles are: : : 1: [ 1 2 1 2 1 2 1 2 1 2 3 2 1 ] (composition) : : o : o o o o ooo : ooooooooooooo (rendering of sandpile) : : : 2: [ 1 2 1 2 1 2 1 2 3 2 1 2 1 ] : : o : o o o ooo o : ooooooooooooo : : : 3: [ 1 2 1 2 1 2 3 2 1 2 1 2 1 ] : : o : o o ooo o o : ooooooooooooo : : : 4: [ 1 2 1 2 3 2 1 2 1 2 1 2 1 ] : : o : o ooo o o o : ooooooooooooo : : : 5: [ 1 2 3 2 1 2 1 2 1 2 1 2 1 ] : : o : ooo o o o o : ooooooooooooo : : : 6: [ 1 2 3 2 3 4 3 2 1 ] : : o : o ooo : ooooooo : ooooooooo : : : 7: [ 1 2 3 4 3 2 3 2 1 ] : : o : ooo o : ooooooo : ooooooooo (End) From _Joerg Arndt_, Mar 09 2014: (Start) The A097331(9) = 14 such sandpiles with base length 9 are: 01: [ 1 2 1 2 1 2 1 2 1 ] 02: [ 1 2 1 2 1 2 3 2 1 ] 03: [ 1 2 1 2 3 2 3 2 1 ] 04: [ 1 2 1 2 3 2 1 2 1 ] 05: [ 1 2 1 2 3 4 3 2 1 ] 06: [ 1 2 3 2 1 2 3 2 1 ] 07: [ 1 2 3 2 1 2 1 2 1 ] 08: [ 1 2 3 2 3 2 1 2 1 ] 09: [ 1 2 3 2 3 2 3 2 1 ] 10: [ 1 2 3 4 3 2 1 2 1 ] 11: [ 1 2 3 2 3 4 3 2 1 ] 12: [ 1 2 3 4 3 2 3 2 1 ] 13: [ 1 2 3 4 3 4 3 2 1 ] 14: [ 1 2 3 4 5 4 3 2 1 ] (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Joerg Arndt)
- A. M. Odlyzko and H. S. Wilf, The editor's corner: n coins in a fountain, Amer. Math. Monthly, 95 (1988), 840-843.
Crossrefs
Cf. A049346 (g.f.: 1 - 1/G(0), where G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A226728 (g.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A226729 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A006958 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A227309 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).
Programs
-
PARI
N = 66; q = 'q + O('q^N); G(k) = if(k>N, 1, 1 + (-q)^(k+1) / (1 - (-q)^(k+1) / G(k+1) ) ); gf = 1 / G(0); Vec(gf)
-
PARI
N = 66; q = 'q + O('q^N); F(q,y,k) = if(k>N, 1, 1/(1 - y*q^2 * F(q, q^2*y, k+1) ) ); Vec( 1 + q * F(q,q,0) ) \\ Joerg Arndt, Mar 09 2014
Formula
a(0) = 1 and a(n) = abs(A049346(n)) for n>=1.
G.f.: 1/ (1-q/(1+q/ (1+q^2/(1-q^2/ (1-q^3/(1+q^3/ (1+q^4/(1-q^4/ (1-q^5/(1+q^5/ (1+-...) )) )) )) )) )).
G.f.: 1 + q * F(q,q) where F(q,y) = 1/(1 - y * q^2 * F(q, q^2*y) ); cf. A005169 and p. 841 of the Odlyzko/Wilf reference; 1/(1 - q * F(q,q)) is the g.f. of A143951. - Joerg Arndt, Mar 09 2014
G.f.: 1 + q/(1 - q^3/(1 - q^5/(1 - q^7/ (...)))) (from formulas above). - Joerg Arndt, Mar 09 2014
G.f.: F(x, x^2) where F(x,y) is the g.f. of A239927. - Joerg Arndt, Mar 29 2014
a(n) ~ c * d^n, where d = 1.23729141259673487395949649334678514763130846902468... and c = 0.0773368373684184197215007198148835507944051447907... - Vaclav Kotesovec, Sep 05 2017
G.f.: A(x) = 2 -1/A143951(x). - R. J. Mathar, Aug 23 2018
Comments