cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227324 Result of changing both the prime indices and the exponents in the prime factorization of n: increment odd values, decrement even values.

This page as a plain text file.
%I A227324 #31 Oct 03 2024 13:42:03
%S A227324 1,9,4,3,49,36,25,81,2,441,169,12,121,225,196,27,361,18,289,147,100,
%T A227324 1521,841,324,7,1089,16,75,529,1764,1369,729,676,3249,1225,6,961,2601,
%U A227324 484,3969,1849,900,1681,507,98,7569,2809,108,5,63,1444,363,2209,144
%N A227324 Result of changing both the prime indices and the exponents in the prime factorization of n: increment odd values, decrement even values.
%C A227324 A self-inverse permutation on the positive integers: a(a(n)) = n.
%H A227324 Alois P. Heinz, <a href="/A227324/b227324.txt">Table of n, a(n) for n = 1..10000</a>
%F A227324 Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} ((p-1)*(p^6 + q(p) +(p^3-1)*q(p)^2))/(p^7 - p*q(p)^2) = 0.3120270364..., where q(p) = nextprime(p) = A151800(p) if p has an odd index, and q(p) = prevprime(p) = A151799(p) otherwise. - _Amiram Eldar_, Sep 17 2023
%e A227324 n = 2^3 => a(n) = 3^4 = 81.
%e A227324 n = 3^2 => a(n) = 2^1 = 2.
%p A227324 a:= n-> mul(ithprime(i[1])^i[2], i=map(x->map(y->y-1+2*irem(y, 2),
%p A227324         [numtheory[pi](x[1]), x[2]]), ifactors(n)[2])):
%p A227324 seq(a(n), n=1..100);  # _Alois P. Heinz_, Jul 17 2013
%t A227324 a[n_] := If[n == 1, 1, Product[{p, e} = pe; Prime[BitXor[PrimePi[p] - 1, 1] + 1]^(BitXor[e - 1, 1] + 1), {pe, FactorInteger[n]}]];
%t A227324 Array[a, 100] (* _Jean-François Alcover_, May 31 2019, after _Andrew Howroyd_ *)
%o A227324 (PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); prime( bitxor( primepi(p)-1, 1)+1)^(bitxor(e-1, 1)+1))} \\ _Andrew Howroyd_, Jul 23 2018
%o A227324 (Python)
%o A227324 primes = [2]*2
%o A227324 primes[1] = 3
%o A227324 def addPrime(k):
%o A227324   for p in primes:
%o A227324     if k%p==0:  return
%o A227324     if p*p > k:  break
%o A227324   primes.append(k)
%o A227324 for n in range(5, 1000000, 6):
%o A227324   addPrime(n)
%o A227324   addPrime(n+2)
%o A227324 for n in range(1,99):
%o A227324   p = 1
%o A227324   j = n
%o A227324   i = 0
%o A227324   while j>1:
%o A227324     e = 0
%o A227324     while j % primes[i] == 0:
%o A227324       j /= primes[i]
%o A227324       e+=1
%o A227324     if e:
%o A227324       e = ((e-1)^1) + 1
%o A227324       p*= primes[i^1]**e
%o A227324     i += 1
%o A227324   print(str(p), end=', ')
%Y A227324 Cf. A003958-A003965, A011262, A011264, A045965-A045973, A151799, A151800.
%K A227324 nonn,easy,mult
%O A227324 1,2
%A A227324 _Alex Ratushnyak_, Jul 07 2013
%E A227324 Keyword:mult added by _Andrew Howroyd_, Jul 23 2018