cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227334 Exponent of the group of the Gaussian integers in a reduced system modulo n.

Original entry on oeis.org

1, 2, 8, 4, 4, 8, 48, 4, 24, 4, 120, 8, 12, 48, 8, 8, 16, 24, 360, 4, 48, 120, 528, 8, 20, 12, 72, 48, 28, 8, 960, 16, 120, 16, 48, 24, 36, 360, 24, 4, 40, 48, 1848, 120, 24, 528, 2208, 8, 336, 20, 16, 12, 52, 72, 120, 48, 360, 28, 3480, 8, 60, 960, 48, 32
Offset: 1

Views

Author

Keywords

Comments

a(n) is the exponent of the multiplicative group of Gaussian integers modulo n, i.e., (Z[i]/nZ[i])* = {a + b*i: a, b in Z/nZ and gcd(a^2 + b^2, n) = 1}. The number of elements in (Z[i]/nZ[i])* is A079458(n).
For n > 2, a(n) is divisible by 4. - Jianing Song, Aug 29 2018
From Jianing Song, Sep 23 2018: (Start)
Equivalent of psi (A002322) in the ring of Gaussian integers.
a(n) is the smallest positive e such that for any Gaussian integer z coprime to n we have z^e == 1 (mod n).
By definition, A079458(n)/a(n) is always an integer, and is 1 iff (Z[i]/nZ[i])* is cyclic, that is, rank((Z[i]/nZ[i])*) = A316506(n) = 0 or 1, and n has a primitive root in (Z[i]/nZ[i])*. A079458(n)/a(n) = 1 iff n = 1, 2 or a prime congruent to 3 modulo 4. (End)

Examples

			Let G = (Z[i]/4Z[i])* = {i, 3i, 1, 1 + 2i, 2 + i, 2 + 3i, 3, 3 + 2i}. The possibilities for the exponent of G are 8, 4, 2 and 1. G^4 = {x^4 mod 4 : x belongs to G} = {1} and i^2 !== 1 (mod 4). Therefore, the exponent of G is greater than 2, accordingly the exponent of G is 4 and a(4) = 4.
		

Crossrefs

Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), this sequence ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319446.

Programs

  • Mathematica
    fa = FactorInteger;lamas[1] = 1;lamas[p_, s_]:= Which[Mod[p, 4]==3,p^(s-1)(p^2 - 1), Mod[p, 4] == 1, p^(s - 1)(p - 1), s ≥ 4, 2^(s - 1), s > 1, 4, s == 1, 2]; lamas[n_] := {aux = 1; Do[aux = LCM[aux, lamas[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length@fa[n]}]; aux}[[1]]; Table[lamas[n], {n, 100}]
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2&&e<=2, r=lcm(r,2^e));
            if(p==2&&e>=3, r=lcm(r,2^(e-1)));
            if(p%4==1, r=lcm(r,(p-1)*p^(e-1)));
            if(p%4==3, r=lcm(r,(p^2-1)*p^(e-1)));
        );
        return(r);
    } \\ Jianing Song, Aug 29 2018

Formula

a(2^e) = 2^e if e <= 2 and 2^(e-1) if e >= 3, a(p^e) = (p - 1)*p^(e-1) if p == 1 (mod 4) and (p^2 - 1)*p^(e-1) if p == 3 (mod 4). If gcd(m, n) = 1 then a(mn) = lcm(a(m), a(n)). - Jianing Song, Aug 29 2018 [See the group structure of (Z[i]/(pi^e)Z[i])* in A316506, where pi is a prime element in Z[i]. - Jianing Song, Oct 03 2022]