This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227340 #10 Feb 11 2015 07:49:44 %S A227340 73,457,1801,3049,3529,4057,8209,10369,19609,20809,33289,41521,51217, %T A227340 84121,103969,111409,115201,121081,129049,141529,150169,155689,180097, %U A227340 223129,282769,308929,342841,397849,426889,432457,627217,649801,658969,710449,729649 %N A227340 Primes of the form p^2 + q^2 - 1 where p and q are consecutive primes. %H A227340 Charles R Greathouse IV, <a href="/A227340/b227340.txt">Table of n, a(n) for n = 1..10000</a> %e A227340 a(1) = 5^2 + 7^2 - 1 = 73, which is prime. %p A227340 K := proc(x) local a; a:=ithprime(x)^2+ithprime(x+1)^2-1; if (isprime(a))then RETURN (a) fi: end: seq(K(x), x=1..500); # _K. D. Bajpai_, Jul 07 2013 %p A227340 K:=proc()local x,a,c; c:=1; for x from 1 to 5000 do; a:=ithprime(x)^2+ithprime(x+1)^2-1;if isprime(a) then lprint(c,a);c:=c+1;fi;od; end: K(); # _K. D. Bajpai_, Jul 07 2013 %t A227340 t = {}; Do[p = Prime[n]; q = Prime[n + 1]; p2 = p^2 + q^2 - 1; If[PrimeQ[p2], AppendTo[t, p2]], {n, 200}]; t (* _T. D. Noe_, Jul 09 2013 *) %o A227340 (PARI) is(n)=if(isprime(n), my(x=sqrtint((n+1)\2)); nextprime(x+1)^2 +precprime(x)^2==n+1 && n>3, 0) \\ _Charles R Greathouse IV_, Jul 08 2013 %o A227340 (PARI) p=2;forprime(q=3,1e5,if(isprime(t=p^2+q^2-1),print1(t", "));p=q) \\ _Charles R Greathouse IV_, Jul 08 2013 %Y A227340 Cf. A072669. %K A227340 nonn %O A227340 1,1 %A A227340 _K. D. Bajpai_, Jul 07 2013