cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227344 Triangle read by rows, partitions into distinct parts by perimeter.

This page as a plain text file.
%I A227344 #21 Jan 28 2015 04:15:03
%S A227344 1,0,1,0,0,2,0,0,0,2,0,0,0,0,3,0,0,0,1,0,3,0,0,0,0,0,0,5,0,0,0,0,0,0,
%T A227344 0,6,0,0,0,0,0,1,0,0,7,0,0,0,0,1,0,0,0,0,9,0,0,0,0,0,0,0,0,1,0,11,0,0,
%U A227344 0,0,0,0,0,1,0,1,0,13,0,0,0,0,0,0,0,0,1,0,1,0,16,0,0,0,0,0,0,1,0,0,0,0,1,0,20,0
%N A227344 Triangle read by rows, partitions into distinct parts by perimeter.
%C A227344 The perimeter of a partition is the sum of all parts p that do not have two neighbors (that is, not both p-1 and p+1 are parts).
%C A227344 Row sums are A000009.
%C A227344 Column sums are A122129 (noted by _Patrick Devlin_).
%H A227344 Joerg Arndt, <a href="/A227344/b227344.txt">Table of n, a(n) for n = 1..5050</a>
%e A227344 Triangle starts (dots for zeros):
%e A227344 01: 1
%e A227344 02: . 1
%e A227344 03: . . 2
%e A227344 04: . . . 2
%e A227344 05: . . . . 3
%e A227344 06: . . . 1 . 3
%e A227344 07: . . . . . . 5
%e A227344 08: . . . . . . . 6
%e A227344 09: . . . . . 1 . . 7
%e A227344 10: . . . . 1 . . . . 9
%e A227344 11: . . . . . . . . 1 . 11
%e A227344 12: . . . . . . . 1 . 1 . 13
%e A227344 13: . . . . . . . . 1 . 1 . 16
%e A227344 14: . . . . . . 1 . . . . 1 . 20
%e A227344 15: . . . . . 1 . . . 1 . 1 1 . 23
%e A227344 16: . . . . . . . . . . 2 . 1 1 . 28
%e A227344 17: . . . . . . . . . . . 2 . 1 2 . 33
%e A227344 18: . . . . . . . . 1 . . 1 2 . 1 2 . 39
%e A227344 19: . . . . . . . . . 1 . . 1 1 1 1 3 . 46
%e A227344 20: . . . . . . . 1 . . . . . 1 1 2 1 3 . 55
%e A227344 21: . . . . . . 1 . . . . . . 2 2 1 2 1 4 . 63
%e A227344 22: . . . . . . . . . . 1 . 1 . 2 1 1 2 2 4 . 75
%e A227344 23: . . . . . . . . . . . 1 . 1 . 2 1 3 2 2 5 . 87
%e A227344 24: . . . . . . . . . . . . 1 . 1 2 3 . 4 2 3 5 . 101
%e A227344 25: . . . . . . . . . 1 . . . 1 . 1 1 3 . 6 2 3 7 . 117
%e A227344 26: . . . . . . . . . . 1 . 1 . . . 2 1 3 . 7 2 4 8 . 136
%e A227344 27: . . . . . . . . 1 . . . . 1 . . . 5 2 2 1 8 3 4 9 . 156
%e A227344 28: . . . . . . . 1 . . . . . . 1 1 . . 4 2 3 2 8 4 5 11 . 180
%e A227344 29: . . . . . . . . . . . . . . 1 2 1 . . 4 3 3 3 9 5 5 13 . 207
%e A227344 30: . . . . . . . . . . . 1 . . 1 1 1 1 . 3 6 2 2 5 9 6 6 14 . 238
%p A227344 b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x^(i+1), 1),
%p A227344       expand(`if`(i<1, 0, `if`(t>1, x^(i+1), 1)*b(n, i-1, iquo(t, 2))+
%p A227344       `if`(i>n, 0, `if`(t=2, x^(i+1), 1)*b(n-i, i-1, iquo(t, 2)+2)))))
%p A227344     end:
%p A227344 T:= n-> (p->seq(coeff(p, x, i), i=1..n))(b(n$2, 0)):
%p A227344 seq(T(n), n=1..20);  # _Alois P. Heinz_, Jul 16 2013
%t A227344 b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t>1, x^(i+1), 1], Expand[If[i<1, 0, If[t>1, x^(i+1), 1]*b[n, i-1, Quotient[t, 2]] + If[i>n, 0, If[t == 2, x^(i+1), 1]*b[n-i, i-1, Quotient[t, 2]+2]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n, 0]]; Table[T[n], {n, 1, 20}] // Flatten (* _Jean-François Alcover_, Jan 28 2015, after _Alois P. Heinz_ *)
%Y A227344 Cf. A227345 (partitions by boundary size).
%Y A227344 Cf. A227426 (diagonal: number of partitions with maximal perimeter).
%Y A227344 Cf. A227538 (smallest k with positive T(n,k)), A227614 (second lower diagonal). - _Alois P. Heinz_, Jul 17 2013
%K A227344 nonn,tabl
%O A227344 1,6
%A A227344 _Joerg Arndt_, Jul 08 2013