cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227345 Triangle read by rows, partitions into distinct parts by size of boundary.

This page as a plain text file.
%I A227345 #32 May 15 2025 21:52:47
%S A227345 1,1,0,1,1,0,1,1,0,0,1,2,0,0,0,1,3,0,0,0,0,1,3,1,0,0,0,0,1,3,2,0,0,0,
%T A227345 0,0,1,5,2,0,0,0,0,0,0,1,5,4,0,0,0,0,0,0,0,1,5,6,0,0,0,0,0,0,0,0,1,6,
%U A227345 7,1,0,0,0,0,0,0,0,0,1,6,10,1,0,0,0,0,0,0,0,0,0,1,7,11,3,0,0,0,0,0,0,0,0,0,0,1,9,13,4,0
%N A227345 Triangle read by rows, partitions into distinct parts by size of boundary.
%C A227345 The boundary size of a partition is the number of parts p that do not have two neighbors (that is, not both p-1 and p+1 are parts).
%C A227345 Row sums are A000009.
%C A227345 Conjecture: there exists a partition (into distinct parts) of n with boundary size k if and only if 0 < k^2 * 3/4 <= n. - _Patrick Devlin_, Jul 13 2013
%H A227345 Joerg Arndt, <a href="/A227345/b227345.txt">Table of n, a(n) for n = 1..5050</a>
%F A227345 From _Patrick Devlin_, Jul 13 2013: (Start)
%F A227345 Let a(n,k) denote the number of partitions into distinct parts of n with boundary size k. Then for all n>0 and k>=0, we have a(n,k+1) >= floor(binomial(n-k, k) * 2^(-binomial(k, 2))) = floor(binomial(n-k, k) * 2^(-A000217(k))). (Proof is by noting a(n,k) >= Sum_{j=1..(n/2-1)} a(j,k-1).)
%F A227345 On the other hand, for all n>0 and k>=0, we also have that a(n,k+1) <= binomial(n-k,k)*A000045(k+1). This is obtained by considering the largest k parts of the boundary, which must be some subset of {1, 2, ..., n-k}. Then the possible 'gaps' of the boundary can each either be filled with the corresponding consecutive integers or left empty. (End)
%e A227345 Triangle starts (dots for zeros, trailing zeros omitted for n>=14):
%e A227345   01: 1
%e A227345   02: 1 .
%e A227345   03: 1 1 .
%e A227345   04: 1 1 . .
%e A227345   05: 1 2 . . .
%e A227345   06: 1 3 . . . .
%e A227345   07: 1 3 1 . . . .
%e A227345   08: 1 3 2 . . . . .
%e A227345   09: 1 5 2 . . . . . .
%e A227345   10: 1 5 4 . . . . . . .
%e A227345   11: 1 5 6 . . . . . . . .
%e A227345   12: 1 6 7 1 . . . . . . . .
%e A227345   13: 1 6 10 1 . . . . . . . . .
%e A227345   14: 1 7 11 3 . . . . . . . . .
%e A227345   15: 1 9 13 4 . . . . . . . . .
%e A227345   16: 1 7 18 6 . . . . . . . . .
%e A227345   17: 1 8 20 9 . . . . . . . . .
%e A227345   18: 1 10 21 14 . . . . . . . .
%e A227345   19: 1 9 27 16 1 . . . . . . .
%e A227345   20: 1 10 29 22 2 . . . . . . .
%e A227345   21: 1 12 32 28 3 . . . . . . .
%e A227345   22: 1 11 37 35 5 . . . . . . .
%e A227345   23: 1 11 42 42 8 . . . . . . .
%e A227345   24: 1 12 45 53 11 . . . . . .
%e A227345   25: 1 13 49 62 17 . . . . . .
%e A227345   26: 1 13 54 73 24 . . . . . .
%e A227345   27: 1 15 58 86 31 1 . . . . .
%e A227345   28: 1 14 65 98 43 1 . . . . .
%e A227345   29: 1 14 70 114 54 3 . . . . .
%e A227345   30: 1 17 72 134 67 5 . . . . .
%e A227345   31: 1 15 82 148 86 8 . . . . .
%e A227345   32: 1 15 87 168 108 11 . . . .
%e A227345   33: 1 18 90 192 129 18 . . . .
%e A227345   34: 1 17 98 212 160 24 . . . .
%e A227345   35: 1 19 103 235 192 35 . . .
%e A227345   36: 1 19 111 264 224 49 . . .
%e A227345   37: 1 18 119 289 268 64 1 . .
%e A227345   38: 1 19 124 320 315 83 2 . .
%e A227345   39: 1 21 130 355 360 112 3 . .
%e A227345   40: 1 20 139 385 424 138 6 . .
%e A227345 In particular, for the tenth row of this table, note that the partitions of ten into distinct parts are 10 = 10 = 9 + 1 = 8 + 2 = 7 + 3 = 6 + 4 = 4 + 3 + 2 + 1 = 7 + 2 + 1 = 6 + 3 + 1 = 5 + 4 + 1 = 5 + 3 + 2. These partitions are sorted by increasing number of parts in the boundary. In particular, note that 4 + 3 + 2 + 1 has only two parts in its boundary (namely 4 and 1). - _Patrick Devlin_, Jul 13 2013
%p A227345 b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x, 1),
%p A227345       expand(`if`(i<1, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+
%p A227345       `if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))
%p A227345     end:
%p A227345 T:= n-> (p->seq(coeff(p, x, i), i=1..n))(b(n$2, 0)):
%p A227345 seq(T(n), n=1..20);  # _Alois P. Heinz_, Jul 16 2013
%t A227345 b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t>1, x, 1], Expand[If[i<1, 0, If[t>1, x, 1]*b[n, i-1, Quotient[t, 2]] + If[i>n, 0, If[t == 2, x, 1] * b[n-i, i-1, Quotient[t, 2]+2]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n, 0]]; Table[T[n], {n, 1, 20}] // Flatten (* _Jean-François Alcover_, Feb 18 2015, after _Alois P. Heinz_ *)
%Y A227345 Cf. A227344 (partitions by perimeter).
%Y A227345 Columns k=1-10 give: A057427 (for n>=1), A227559, A227560, A227561, A227562, A227563, A227564, A227565, A227566, A227567. Cf. A227551 (a version without trailing zeros), A227552. - _Alois P. Heinz_, Jul 16 2013
%K A227345 nonn,tabl
%O A227345 1,12
%A A227345 _Joerg Arndt_, Jul 08 2013