cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227353 Number of lattice points in the closed region bounded by the graphs of y = 3*x/5, x = n, and y = 0, excluding points on the x-axis.

This page as a plain text file.
%I A227353 #35 Mar 24 2022 03:43:42
%S A227353 0,1,2,4,7,10,14,18,23,29,35,42,49,57,66,75,85,95,106,118,130,143,156,
%T A227353 170,185,200,216,232,249,267,285,304,323,343,364,385,407,429,452,476,
%U A227353 500,525,550,576,603,630,658,686,715,745,775,806,837,869,902,935
%N A227353 Number of lattice points in the closed region bounded by the graphs of y = 3*x/5, x = n, and y = 0, excluding points on the x-axis.
%C A227353 See A227347.
%H A227353 Clark Kimberling, <a href="/A227353/b227353.txt">Table of n, a(n) for n = 1..1000</a>
%H A227353 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,1,-2,1).
%F A227353 a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7).
%F A227353 G.f.: (x*(1 + x^2 + x^3))/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
%F A227353 According to Wolfram Alpha, a(n) = floor(Re(E(n^2|Pi))) where E(x|m) is the incomplete elliptic integral of the second kind. - _Kritsada Moomuang_, Jan 28 2022
%F A227353 a(n) = a(n-1) + floor(3*n/5), n > 1. - _Gennady Eremin_, Mar 15 2022
%F A227353 a(n) = floor(n*(3*n-1)/10). - _Kevin Ryde_, Mar 15 2022
%e A227353 a(1) = floor(3/5) = 0; a(2) = floor(6/5) = 1; a(3) = a(2) + floor(9/5) = 2; a(4) = a(3) + floor(12/5) = 4.
%t A227353 z = 150; r = 3/5; k = 1; a[n_] := Sum[Floor[r*x^k], {x, 1, n}]; t = Table[a[n], {n, 1, z}]
%o A227353 (PARI) a(n) = (3*n^2-n)\10; \\ _Kevin Ryde_, Mar 15 2022
%o A227353 (Python) a = lambda n: n*(3*n-1)//10 # _Gennady Eremin_, Mar 20 2022
%Y A227353 Cf. A227347, A130520, A011858, A033437.
%Y A227353 Cf. A057355 (first differences).
%K A227353 nonn,easy
%O A227353 1,3
%A A227353 _Clark Kimberling_, Jul 08 2013