This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227356 #26 Jun 30 2025 16:47:26 %S A227356 1,2,5,10,20,36,65,112,193,324,544,900,1489,2442,4005,6534,10660, %T A227356 17336,28193,45760,74273,120408,195200,316216,512257,829458,1343077, %U A227356 2174130,3519412,5696124,9219105,14919408,24144289 %N A227356 Partial sums of A129361. %C A227356 Sum of labeled numbers of boxes arranged as Pyramid type-II with base Fibonacci(n). %C A227356 Let us call a Pyramid "type-I" when each row starts with the same number as the leftmost base number, and "type-II" when each column has the same number as the base. %C A227356 The Pyramid arrangements are related to other sequences as follows: %C A227356 Base Number Type-I Type-II %C A227356 ----------- ------ ------- %C A227356 Natural A002623 A034828 %C A227356 Odd A000292 A128624 %C A227356 Fibonacci A129696 a(n) %C A227356 1 A002620 A002620 %C A227356 1,0 A008805 %C A227356 See illustration in links. %H A227356 Kival Ngaokrajang, <a href="/A227356/a227356.jpg">Illustration for some small n.</a> %H A227356 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-3,1,-1,0,1). %F A227356 For n >=2, a(n) = a(n-1) + A129361(n-1). %F A227356 G.f. -x*(1+x)*(x^2-x+1) / ( (x-1)*(x^2+x-1)*(x^4+x^2-1) ). - _Joerg Arndt_, Jul 10 2013 %F A227356 a(n) = 2 + A000045(n+4) - A096748(n+6). - _R. J. Mathar_, Jul 20 2013 %t A227356 LinearRecurrence[{2,1,-3,1,-1,0,1},{1,2,5,10,20,36,65},40] (* _Harvey P. Dale_, Jun 30 2025 *) %o A227356 (Small Basic) %o A227356 a[1] = 1 %o A227356 k = 0 %o A227356 s5 = Math.SquareRoot(5) %o A227356 For n = 2 To 51 %o A227356 If Math.Remainder(n,2)=0 Then %o A227356 i = (n+2)/2 %o A227356 Else %o A227356 i = (n+1)/2 %o A227356 EndIf %o A227356 For j = i To n %o A227356 k = k + Math.Round(Math.Power((1+s5)/2,j)/s5) %o A227356 EndFor %o A227356 a[n] = a[n-1] + k %o A227356 TextWindow.Write(a[n-1] + ", ") %o A227356 k = 0 %o A227356 EndFor %Y A227356 Cf. A002623, A034828, A002620, A000292, A128624, A129696, A008805. %K A227356 nonn %O A227356 1,2 %A A227356 _Kival Ngaokrajang_, Jul 08 2013