cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227379 Hankel determinants of order n of A225439(n): a(n) = det[A225439(i+j-1)], i,j=0..n, n>=0.

This page as a plain text file.
%I A227379 #13 Feb 24 2019 14:38:32
%S A227379 1,3,45,3402,1299078,2507870079,24487299427734,1209640056157393380,
%T A227379 302358334494179897593596,382459771435292361460924379370,
%U A227379 2448391839613471201062299337071282925
%N A227379 Hankel determinants of order n of A225439(n): a(n) = det[A225439(i+j-1)], i,j=0..n, n>=0.
%H A227379 Vaclav Kotesovec, <a href="/A227379/b227379.txt">Table of n, a(n) for n = 0..53</a>
%F A227379 a(n) ~ c * 3^(n*(4*n + 3)/2) * n^(1/36) / 4^(n*(n+1)), where c = 3^(11/36) * exp(1/36) * Gamma(1/3)^(1/3) / (2^(7/12) * A^(1/3) * Pi^(1/6)) = 1.0139930857022957587164044116685749094666597031981229532... and A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Feb 24 2019
%p A227379 with(LinearAlgebra):
%p A227379 A225439 := proc(n) add(binomial(k, n-k)*3^(k)*(-1)^(n-k)*binomial(n+k-1, n-1), k=0..n) end:
%p A227379 hank1:= (i, j)-> A225439(i+j-1):
%p A227379 a:= proc(n) Determinant(Matrix(n, n, hank1)) end:
%p A227379 seq(a(n), n=0..10);
%t A227379 A225439[n_] := Sum[Binomial[k, n-k]*3^k*(-1)^(n-k)*Binomial[n+k-1, n-1], {k, 0, n}]; a[n_] := Det[Table[A225439[i+j-1], {i, n}, {j, n}]]; a[0] = 1; Table[ a[n], {n, 0, 11}] (* _Vaclav Kotesovec_, Feb 24 2019, after _Jean-François Alcover_ *)
%Y A227379 Cf. A227143, A225439, A101799, A101800, A165343, A165344, A059486.
%K A227379 nonn
%O A227379 0,2
%A A227379 _Karol A. Penson_, Jul 09 2013