A227382 Number of n X 3 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 4 binary array having a sum of one, with rows and columns of the latter in lexicographically nondecreasing order.
4, 15, 54, 185, 587, 1704, 4532, 11126, 25430, 54568, 110768, 214130, 396492, 706695, 1217599, 2035257, 3310713, 5254953, 8157605, 12410055, 18533721, 27214306, 39342934, 56065160, 78838936, 109502710, 150354934, 204246360, 274686610
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....0..0..1 ..0..0..0....0..1..0....0..0..0....0..0..1....1..0..0....1..0..0....0..0..0 ..0..1..1....0..1..0....1..0..0....0..0..0....0..0..1....0..0..1....0..0..0 ..0..0..0....0..0..1....0..1..1....0..1..0....0..0..1....0..1..0....1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A227385.
Formula
Empirical: a(n) = (1/90720)*n^9 + (1/5760)*n^8 + (1/864)*n^7 + (1/64)*n^6 - (91/864)*n^5 + (2563/1920)*n^4 - (96743/18144)*n^3 + (5083/288)*n^2 - (10643/360)*n + 31 for n>3.
Conjectures from Colin Barker, Sep 08 2018: (Start)
G.f.: x*(4 - 25*x + 84*x^2 - 160*x^3 + 207*x^4 - 179*x^5 + 107*x^6 - 42*x^7 + 19*x^9 - 16*x^10 + 6*x^11 - x^12) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>13.
(End)