cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A227381 Number of n X n 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X(n+1) binary array having a sum of one, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

2, 7, 54, 1104, 61127, 8988949, 3657501287
Offset: 1

Views

Author

R. H. Hardin Jul 09 2013

Keywords

Comments

Diagonal of A227385

Examples

			Some solutions for n=4
..0..0..1..0....0..0..0..0....0..1..0..0....0..0..1..0....0..0..1..0
..1..0..0..1....0..1..0..0....1..0..0..1....0..1..0..1....1..0..0..0
..0..0..1..0....1..0..0..0....0..1..1..0....0..0..1..1....0..0..0..1
..0..0..0..1....0..0..0..0....0..0..0..0....0..0..1..1....0..1..1..0
		

A227382 Number of n X 3 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 4 binary array having a sum of one, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

4, 15, 54, 185, 587, 1704, 4532, 11126, 25430, 54568, 110768, 214130, 396492, 706695, 1217599, 2035257, 3310713, 5254953, 8157605, 12410055, 18533721, 27214306, 39342934, 56065160, 78838936, 109502710, 150354934, 204246360, 274686610
Offset: 1

Views

Author

R. H. Hardin, Jul 09 2013

Keywords

Examples

			Some solutions for n=4:
..1..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....0..0..1
..0..0..0....0..1..0....0..0..0....0..0..1....1..0..0....1..0..0....0..0..0
..0..1..1....0..1..0....1..0..0....0..0..0....0..0..1....0..0..1....0..0..0
..0..0..0....0..0..1....0..1..1....0..1..0....0..0..1....0..1..0....1..0..0
		

Crossrefs

Column 3 of A227385.

Formula

Empirical: a(n) = (1/90720)*n^9 + (1/5760)*n^8 + (1/864)*n^7 + (1/64)*n^6 - (91/864)*n^5 + (2563/1920)*n^4 - (96743/18144)*n^3 + (5083/288)*n^2 - (10643/360)*n + 31 for n>3.
Conjectures from Colin Barker, Sep 08 2018: (Start)
G.f.: x*(4 - 25*x + 84*x^2 - 160*x^3 + 207*x^4 - 179*x^5 + 107*x^6 - 42*x^7 + 19*x^9 - 16*x^10 + 6*x^11 - x^12) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>13.
(End)

A227383 Number of nX4 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X5 binary array having a sum of one, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

5, 30, 185, 1104, 6160, 31073, 141192, 581706, 2192737, 7631150, 24723499, 75114814, 215382006, 586096131, 1520882101, 3779307010, 9026380556, 20787492011, 46293089506, 99943655427, 209652253128, 428180495383
Offset: 1

Views

Author

R. H. Hardin Jul 09 2013

Keywords

Comments

Column 4 of A227385

Examples

			Some solutions for n=4
..0..1..0..0....1..0..0..0....0..1..0..0....0..0..1..0....0..1..0..0
..1..0..1..1....0..1..0..0....0..0..1..1....1..0..0..0....1..0..0..0
..0..0..1..1....0..0..1..0....0..0..0..1....0..0..0..0....0..1..0..1
..0..0..1..0....0..0..0..1....0..0..1..1....0..1..1..1....0..1..1..1
		

Formula

Empirical: a(n) = (1/2534272925184000)*n^19 + (23/800296713216000)*n^18 + (31/29640619008000)*n^17 + (1061/31384184832000)*n^16 + (1/1793792000)*n^15 + (901/89159616000)*n^14 + (573137/7846046208000)*n^13 + (19320181/3621252096000)*n^12 - (25008281/201180672000)*n^11 + (332913253/109734912000)*n^10 - (5757514877/134120448000)*n^9 + (1008987604001/2414168064000)*n^8 - (7198243864451/3923023104000)*n^7 - (144244343741471/11769069312000)*n^6 + (12251347161947/40864824000)*n^5 - (164980284780767/59439744000)*n^4 + (28073158072/1786785)*n^3 - (35127268025713/617512896)*n^2 + (14284038375031/116396280)*n - 121172 for n>7

A227384 Number of nX5 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X6 binary array having a sum of one, with rows and columns of the latter in lexicographically nondecreasing order.

Original entry on oeis.org

6, 56, 587, 6160, 61127, 550010, 4450124, 32473856, 215116595, 1303420926, 7278846827, 37731073135, 182726436203, 831526393503, 3573916903775, 14573693121509, 56609147953260, 210199678971798, 748463901892529
Offset: 1

Views

Author

R. H. Hardin Jul 09 2013

Keywords

Comments

Column 5 of A227385

Examples

			Some solutions for n=4
..1..0..0..0..0....0..1..0..0..0....0..0..0..1..0....0..1..0..0..0
..0..0..0..1..0....1..0..0..1..1....0..0..1..0..0....1..0..0..1..1
..0..0..1..0..1....0..0..1..1..0....0..1..0..0..0....0..0..1..1..1
..0..1..1..1..1....0..0..1..1..1....0..0..1..1..0....0..0..0..0..0
		

Formula

Empirical polynomial of degree 39 (see link above)
Showing 1-4 of 4 results.