This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227392 #28 Sep 09 2023 19:38:19 %S A227392 1,2,2,3,5,6,10,6,9,10,24,9,13,14,44,12,17,18,70,15,21,22,102,18,25, %T A227392 26,140,21,29,30,184,24,33,34,234,27,37,38,290,30,41,42,352,33,45,46, %U A227392 420,36,49,50 %N A227392 Number of 2-Bottom-Card shuffles required to return a deck of size n to its original order. %C A227392 Apply the P card and the B card, the two cards on the bottom of the stack, to do shuffling a deck of cards. The T cards are on the top of cards and the M cards are between the T cards and the P card. %C A227392 The shuffling steps are like this: (T)(M) P B -> B (T)(M) P -> B (T) P (M). %C A227392 Let n = T + M +2, (n >= 2). New P = ceiling((n+1)/2). %C A227392 Count cycles to return original order for the deck of size n. %C A227392 Order (4k+1)th and (4k+2)th items, k >= 0, can get a Latin square. %H A227392 Hong-Chang Wang, <a href="/A227392/b227392.txt">Table of n, a(n) for n = 1..100</a> %F A227392 a(4k+1) = 4k+1, k >= 0; %F A227392 a(4k+2) = 4k+2, k >= 0; %F A227392 a(4k+3) = 8k+2, k=0,1; %F A227392 a(4k+3) = a(4k-1) + 6k + 2, k >= 2; %F A227392 a(4k+4) = 3*(k+1), k >= 0. %F A227392 From _Joerg Arndt_, Jul 16 2013: (Start) %F A227392 G.f.: x*(2*x^9 + 3*x^8 + 3*x^7 - 4*x^6 - 2*x^4 - 3*x^3 - 2*x^2 - 2*x - 1) / ((x-1)*(x+1)*(x^2+1))^3; %F A227392 a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). (End) %e A227392 a(1) = 1 %e A227392 1 %e A227392 1 %e A227392 . %e A227392 a(2) = 2 %e A227392 1 2 %e A227392 2 1 %e A227392 1 2 %e A227392 . %e A227392 a(3) = 2 %e A227392 1 2 3 %e A227392 3 2 1 %e A227392 1 2 3 %e A227392 . %e A227392 a(4) = 3 %e A227392 1 2 3 4 %e A227392 4 1 3 2 %e A227392 2 4 3 1 %e A227392 1 2 3 4 %e A227392 . %e A227392 a(5) = 5 %e A227392 1 2 3 4 5 %e A227392 5 1 4 2 3 %e A227392 3 5 2 1 4 %e A227392 4 3 1 5 2 %e A227392 2 4 5 3 1 %e A227392 1 2 3 4 5 %e A227392 . %e A227392 a(6) = 6 %e A227392 1 2 3 4 5 6 %e A227392 6 1 2 5 3 4 %e A227392 4 6 1 3 2 5 %e A227392 5 4 6 2 1 3 %e A227392 3 5 4 1 6 2 %e A227392 2 3 5 6 4 1 %e A227392 1 2 3 4 5 6 %e A227392 . %e A227392 a(7) = 10 %e A227392 1 2 3 4 5 6 7 %e A227392 7 1 2 6 3 4 5 %e A227392 5 7 1 4 2 6 3 %e A227392 3 5 7 6 1 4 2 %e A227392 2 3 5 4 7 6 1 %e A227392 1 2 3 6 5 4 7 %e A227392 7 1 2 4 3 6 5 %e A227392 5 7 1 6 2 4 3 %e A227392 3 5 7 4 1 6 2 %e A227392 2 3 5 6 7 4 1 %e A227392 1 2 3 4 5 6 7 %e A227392 . %e A227392 a(8) = 6 %e A227392 1 2 3 4 5 6 7 8 %e A227392 8 1 2 3 7 4 5 6 %e A227392 6 8 1 2 5 3 7 4 %e A227392 4 6 8 1 7 2 5 3 %e A227392 3 4 6 8 5 1 7 2 %e A227392 2 3 4 6 7 8 5 1 %e A227392 1 2 3 4 5 6 7 8 %e A227392 . %e A227392 a(9) = 9 %e A227392 1 2 3 4 5 6 7 8 9 %e A227392 9 1 2 3 8 4 5 6 7 %e A227392 7 9 1 2 6 3 8 4 5 %e A227392 5 7 9 1 4 2 6 3 8 %e A227392 8 5 7 9 3 1 4 2 6 %e A227392 6 8 5 7 2 9 3 1 4 %e A227392 4 6 8 5 1 7 2 9 3 %e A227392 3 4 6 8 9 5 1 7 2 %e A227392 2 3 4 6 7 8 9 5 1 %e A227392 1 2 3 4 5 6 7 8 9 %o A227392 (C) %o A227392 int a(int n) %o A227392 { %o A227392 int c[101]; %o A227392 int i, step, B, P, m; %o A227392 for (i=1 ; i<n+1 ; i++) { c[i] = i; } %o A227392 step = 0; %o A227392 next: %o A227392 B = c[n]; %o A227392 for (i=n-1 ; i>0 ; i--) { c[i+1] = c[i]; } %o A227392 c[1] = B; %o A227392 m = (n+2)/2; %o A227392 P = c[n]; %o A227392 if ( n>2 ) { for (i=n-1 ; i>=m ; i--) c[i+1] = c[i]; } %o A227392 c[m] = P; %o A227392 step++; %o A227392 for (i=1 ; i<n ; i++) { if ( c[i] != i ) goto next; } %o A227392 return step; %o A227392 } %o A227392 #include <stdio.h> %o A227392 int main() %o A227392 { %o A227392 int n; %o A227392 for (n=1; n<=100; ++n) printf("%d, ", a(n)); %o A227392 printf("\n"); %o A227392 return 0; %o A227392 } %K A227392 nonn %O A227392 1,2 %A A227392 _Hong-Chang Wang_, Jul 10 2013