This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227403 #30 Feb 20 2019 09:49:48 %S A227403 1,2,14,1514,1308582,17304263902,1362702892177706, %T A227403 1323407909279927430346,11218363871234340925730020646, %U A227403 637467717878006909442727527733810142,519660435252919757259949810325837093364580014,2289503386759572781844843312201361014103189493095636611 %N A227403 a(n) = Sum_{k=0..n} binomial(n^2, n*k) * binomial(n*k, k^2). %H A227403 Seiichi Manyama, <a href="/A227403/b227403.txt">Table of n, a(n) for n = 0..46</a> %H A227403 V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Asymptotic of sequence A227403</a>, Sep 21 2013 %F A227403 a(n) = Sum_{k=0..n} (n^2)! / ( (n^2-n*k)! * (n*k-k^2)! * (k^2)! ). %F A227403 Limit n->infinity a(n)^(1/n^2) = r^(-(1+r)^2/(2*r)) = 2.93544172048274..., where r = 0.6032326837741362... (see A237421) is the root of the equation (1-r)^(2*r) = r^(2*r+1). - _Vaclav Kotesovec_, Sep 21 2013 %e A227403 The following triangles illustrate the terms involved in the sum %e A227403 a(n) = Sum_{k=0..n} A209330(n,k) * A228832(n,k). %e A227403 Triangle A209330(n,k) = binomial(n^2, n*k) begins: %e A227403 1; %e A227403 1, 1; %e A227403 1, 6, 1; %e A227403 1, 84, 84, 1; %e A227403 1, 1820, 12870, 1820, 1; %e A227403 1, 53130, 3268760, 3268760, 53130, 1; %e A227403 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1; %e A227403 ... %e A227403 Triangle A228832(n,k) = binomial(n*k, k^2) begins: %e A227403 1; %e A227403 1, 1; %e A227403 1, 2, 1; %e A227403 1, 3, 15, 1; %e A227403 1, 4, 70, 220, 1; %e A227403 1, 5, 210, 5005, 4845, 1; %e A227403 1, 6, 495, 48620, 735471, 142506, 1; ... %t A227403 Table[Sum[Binomial[n^2,n*k]*Binomial[n*k,k^2],{k,0,n}],{n,0,10}] (* _Vaclav Kotesovec_, Sep 21 2013 *) %t A227403 r^(-(1+r)^2/(2*r))/.FindRoot[(1-r)^(2*r) == r^(2*r+1), {r,1/2}, WorkingPrecision->50] (* program for numerical value of the limit n->infinity a(n)^(1/n^2), _Vaclav Kotesovec_, Sep 21 2013 *) %o A227403 (PARI) {a(n)=sum(k=0, n, binomial(n^2, n*k)*binomial(n*k, k^2))} %o A227403 for(n=0,20,print1(a(n),", ")) %Y A227403 Cf. A209330, A228832, A206849, A206152, A237421. %K A227403 nonn %O A227403 0,2 %A A227403 _Paul D. Hanna_, Sep 20 2013