This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227421 #13 Jul 27 2013 10:29:01 %S A227421 7,23,37,47,67,73,233,277,353,479,613,619,631,647,809,1009,1069,1097, %T A227421 1283,1297,1433,1453,1459,1471,1493,1499,1607,1613,1663,1709,1721, %U A227421 1759,1783,1789,1867,1889,1901,1931,1993,2099,2137,2161,2377,2383,2411,2521,2621 %N A227421 Primes p such that 2*p = prime(m) + prime(m + k) for some k > 2, where prime(m) and p or p and prime(m + k) are consecutive primes. %C A227421 This is the middle prime q in a prime triple p < q=(p+r)/2 < r such that either (p,q) are two consecutive primes or (q,r) are two consecutive primes, but (p,q,r) are not three consecutive primes. %e A227421 In the ordered set of primes we have ...,607, 613, 617, 619, 631,... and (607 + 631)/2 = 619, where 619 and 631 are consecutive primes, therefore 619 is in this sequence. %p A227421 for i from 2 to 400 do %p A227421 p := ithprime(i) ; %p A227421 pn := prevprime(p) ; %p A227421 pk := 2*p-pn ; %p A227421 if isprime(pk) and pk > nextprime(p) then %p A227421 printf("%d,",p) ; %p A227421 else %p A227421 pk := nextprime(p) ; %p A227421 pn := 2*p-pk ; %p A227421 if isprime(pn) and pn < prevprime(p) then %p A227421 printf("%d,",p) ; %p A227421 end if; %p A227421 end if; %p A227421 end do: # _R. J. Mathar_, Jul 20 2013 %Y A227421 Cf. A098029. %K A227421 nonn %O A227421 1,1 %A A227421 _Irina Gerasimova_, Jul 11 2013 %E A227421 Corrected by _R. J. Mathar_, Jul 20 2013