This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227431 #34 Jul 30 2016 19:53:51 %S A227431 1,1,0,2,1,1,3,1,0,-1,5,2,1,1,2,8,3,1,0,-1,-3,13,5,2,1,1,2,5,21,8,3,1, %T A227431 0,-1,-3,-8,34,13,5,2,1,1,2,5,13,55,21,8,3,1,0,-1,-3,-8,-21,89,34,13, %U A227431 5,2,1,1,2,5,13,34,144,55,21,8,3,1,0,-1,-3,-8,-21 %N A227431 Fibonacci differences triangle, T(n,k), k<=n, where column k holds the k-th difference of A000045, read by rows. %C A227431 Consecutive columns (i.e., k = 1, 2, 3, ...) shift the Fibonacci sequence down by 2 indices. %C A227431 Diagonal (n = k) produces Fibonacci numbers at increasingly negative indices for n = k > 2. See A039834. %C A227431 Row sums equal A005013(n), which equals Fibonacci A000045(n), if n is even, and equals Lucas numbers A000204(n) if n is odd. %C A227431 (Rows that sum to Lucas numbers have all positive values.) %H A227431 T. D. Noe, <a href="/A227431/b227431.txt">Rows n = 1..100 of triangle, flattened</a> %F A227431 T(n,1) = F(n) for n > 0, where F(n) = A000045(n), T(n,k) = T(n,k-1) - T(n-1,k-1). %e A227431 1 %e A227431 1 0 %e A227431 2 1 1 %e A227431 3 1 0 -1 %e A227431 5 2 1 1 2 %e A227431 8 3 1 0 -1 -3 %e A227431 13 5 2 1 1 2 5 %e A227431 21 8 3 1 0 -1 -3 -8 %e A227431 34 13 5 2 1 1 2 5 13 %e A227431 55 21 8 3 1 0 -1 -3 -8 -21 %e A227431 89 34 13 5 2 1 1 2 5 13 34 %t A227431 Flatten[Table[Fibonacci[Range[n, -n + 1, -2]], {n, 15}]] (* _T. D. Noe_, Jul 26 2013 *) %o A227431 (Haskell) %o A227431 a227431 n k = a227431_tabl !! (n-1) !! (k-1) %o A227431 a227431_row n = a227431_tabl !! (n-1) %o A227431 a227431_tabl = h [] 0 1 where %o A227431 h row u v = row' : h row' v (u + v) where row' = scanl (-) v row %o A227431 -- _Reinhard Zumkeller_, Jul 28 2013 %o A227431 (PARI) T(n,k)=fibonacci(n-2*k+2) \\ _Charles R Greathouse IV_, Jul 30 2016 %Y A227431 Cf. A000045, A039834, A005013. %K A227431 sign,easy,nice,tabl %O A227431 1,4 %A A227431 _Richard R. Forberg_, Jul 11 2013