This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227454 #20 Feb 16 2025 08:33:20 %S A227454 1,-3,9,-22,51,-108,221,-429,810,-1476,2631,-4572,7802,-13056,21519, %T A227454 -34918,55935,-88452,138332,-213990,327852,-497592,748833,-1117692, %U A227454 1655719,-2434938,3556791,-5161808,7445631,-10677096,15226658,-21599469,30485268,-42817788 %N A227454 Expansion of q * (f(q^9) / f(q))^3 in powers of q where f() is a Ramanujan theta function. %C A227454 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %C A227454 Zagier (2009) denotes the g.f. as t(z) in Case B which is associated with F(t) the g.f. of A006077. %D A227454 D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366. %H A227454 Seiichi Manyama, <a href="/A227454/b227454.txt">Table of n, a(n) for n = 1..10000</a> %H A227454 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A227454 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %H A227454 D. Zagier, <a href="http://people.mpim-bonn.mpg.de/zagier/files/tex/AperylikeRecEqs/fulltext.pdf">Integral solutions of Apery-like recurrence equations</a>. %F A227454 Expansion of c(-q^3) / (-3 * b(-q)) in powers of q where b(), c() are cubic AGM theta functions. %F A227454 Expansion of (eta(q) * eta(q^4) * eta(q^18)^3 / (eta(q^2)^3 * eta(q^9) * eta(q^36)))^3 in powers of q. %F A227454 Euler transform of period 36 sequence [ -3, 6, -3, 3, -3, 6, -3, 3, 0, 6, -3, 3, -3, 6, -3, 3, -3, 0, -3, 3, -3, 6, -3, 3, -3, 6, 0, 3, -3, 6, -3, 3, -3, 6, -3, 0, ...]. %F A227454 G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/27) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A227498. %F A227454 G.f. t(q) satisfies f(q) = F(t(q)) where F() is the g.f. of A006077 and f() is the g.f. of A226535 %F A227454 G.f.: x * (Product_{k>0} (1 - (-x)^(9*k)) / (1 - (-x)^k))^3. %F A227454 a(n) = -(-1)^n * A121589(n). %e A227454 G.f. = q - 3*q^2 + 9*q^3 - 22*q^4 + 51*q^5 - 108*q^6 + 221*q^7 - 429*q^8 + ... %t A227454 a[ n_] := SeriesCoefficient[ q (QPochhammer[ -q^9] / QPochhammer[ -q])^3, {q, 0, n}] %o A227454 (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) * eta(x^18 + A)^3 / (eta(x^2 + A)^3 * eta(x^9 + A) * eta(x^36 + A)))^3, n))} %Y A227454 Cf. A006077, A121589, A226535, A227498. %Y A227454 The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.) %K A227454 sign %O A227454 1,2 %A A227454 _Michael Somos_, Sep 22 2013