This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227466 #11 Aug 16 2018 03:00:19 %S A227466 1,2,11,96,1149,17520,324855,7096320,178495065,5081045760, %T A227466 161485639875,5668185600000,217773547039125,9090267234048000, %U A227466 409648199646660975,19822083757572096000,1025047834112461784625,56415976360602034176000,3292602426688307236378875 %N A227466 E.g.f. equals the series reversion of tanh(x) / exp(x). %C A227466 Note that arctanh(x) = log((1+x)/(1-x))/2. %F A227466 E.g.f. A(x) satisfies: A(x) = arctanh(x*exp(A(x))). %F A227466 a(n) ~ ((1+sqrt(5))/2)^(5*n/2) * n^(n-1) / (5^(1/4) * exp(n)). - _Vaclav Kotesovec_, Jan 10 2014 %e A227466 E.g.f.: A(x) = x + 2*x^2/2! + 11*x^3/3! + 96*x^4/4! + 1149*x^5/5! + 17520*x^6/6! + ... %e A227466 where A( tanh(x)/exp(x) ) = x. %t A227466 Rest[CoefficientList[InverseSeries[Series[Tanh[x]/E^x,{x,0,20}],x],x] * Range[0,20]!] (* _Vaclav Kotesovec_, Jan 10 2014 *) %o A227466 (PARI) {a(n)=local(X=x+x*O(x^n));n!*polcoeff(serreverse(tanh(X)/exp(X)), n)} %o A227466 for(n=1,25,print1(a(n),", ")) %o A227466 (PARI) {a(n)=local(A=x); for(i=1,n,A=atanh(x*exp(A+x*O(x^n)))); n!*polcoeff(A, n)} %o A227466 for(n=1,25,print1(a(n),", ")) %Y A227466 Cf. A227465. %K A227466 nonn %O A227466 1,2 %A A227466 _Paul D. Hanna_, Jul 14 2013