A227472 Decimal expansion of the side of the equilateral triangle that can cover every triangle of perimeter 2.
1, 0, 0, 2, 8, 5, 1, 4, 2, 6, 6, 3, 4, 1, 8, 0, 6, 6, 3, 0, 4, 0, 6, 1, 3, 9, 9, 7, 6, 4, 5, 5, 0, 3, 0, 3, 3, 1, 0, 4, 9, 7, 8, 6, 3, 1, 2, 3, 9, 0, 3, 2, 3, 1, 4, 0, 0, 3, 5, 0, 1, 2, 1, 6, 3, 0, 3, 4, 6, 7, 6, 7, 1, 8, 1, 4, 5, 2, 8, 5, 5, 3, 3, 4, 2, 3, 5, 2, 5, 0, 3, 4, 7, 3, 7, 8, 6, 0, 1, 3
Offset: 1
Examples
1.00285142663418066304061399764550303310497863123903231400350121630346767...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 494.
Links
- John E. Wetzel, The Smallest Equilateral Cover for Triangles of Perimeter Two, Mathematics Magazine Vol. 70, No. 2 (Apr., 1997), pp. 125-130.
Programs
-
Mathematica
f[x_] := Sqrt[3]*(1 + Sin[x/2])*Sec[Pi/6 - x]; x0 = x /. ToRules @ Reduce[0 < x < Pi/6 && f'[x] == 0, x, Reals]; RealDigits[2/f[x0], 10, 105][[1, 1 ;; 100]] (* Jean-François Alcover, Jul 16 2013 *)
-
PARI
t=solve(x=0,Pi/6, cos(x/2) - 2*(sin(x/2) + 1)*tan(Pi/6 - x)); 4*sin(Pi/6-t)/sqrt(3)/cos(t/2) \\ Charles R Greathouse IV, Feb 13 2025
Formula
2/f(x0) where x0 is the global minimum of the trigonometric function f(x) = sqrt(3)*(1+sin(x/2))*sec(Pi/6-x) on the interval [0, Pi/6].
Comments