A227507 Table of p(a,n) read by antidiagonals, where p(a,n) = Sum_{k=1..n} gcd(k,n) exp(2 Pi i k a / n) is the Fourier transform of the greatest common divisor.
1, 3, 1, 5, 1, 1, 8, 2, 3, 1, 9, 2, 2, 1, 1, 15, 4, 4, 5, 3, 1, 13, 2, 4, 2, 2, 1, 1, 20, 6, 6, 4, 8, 2, 3, 1, 21, 4, 6, 5, 4, 2, 5, 1, 1, 27, 6, 8, 6, 6, 9, 4, 2, 3, 1, 21, 4, 6, 4, 6, 2, 4, 2, 2, 1, 1, 40, 10, 12, 12, 12, 6, 15, 4, 8, 5, 3, 1, 25, 4, 10, 4, 6, 4, 6, 2, 4, 2, 2, 1, 1, 39, 12, 8, 10, 12, 6
Offset: 1
Examples
1, 3, 5, 8, 9, 15, 13, 20, 21, 27 1, 1, 2, 2, 4, 2, 6, 4, 6, 4 1, 3, 2, 4, 4, 6, 6, 8, 6, 12 1, 1, 5, 2, 4, 5, 6, 4, 12, 4 1, 3, 2, 8, 4, 6, 6, 12, 6, 12 1, 1, 2, 2, 9, 2, 6, 4, 6, 9 The array G_d(n) of Abel et al. (with A018804 on the diagonal) starts as follows: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ,... 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3,... 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2,... 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8, 2, 4, 2, 8,... 4, 4, 4, 4, 9, 4, 4, 4, 4, 9, 4, 4, 4, 4, 9, 4, 4, 4, 4, 9,... 2, 6, 5, 6, 2,15, 2, 6, 5, 6, 2,15, 2, 6, 5, 6, 2,15, 2, 6,... 6, 6, 6, 6, 6, 6,13, 6, 6, 6, 6, 6, 6,13, 6, 6, 6, 6, 6, 6,... 4, 8, 4,12, 4, 8, 4,20, 4, 8, 4,12, 4, 8, 4,20, 4, 8, 4,12,.. 6, 6,12, 6, 6,12, 6, 6,21, 6, 6,12, 6, 6,12, 6, 6,21, 6, 6,... 4,12, 4,12, 9,12, 4,12, 4,27, 4,12, 4,12, 9,12, 4,12, 4,27,... 10,10,10,10,10,10,10,10,10,10,21,10,10,10,10,10,10,10,10,10,... 4, 8,10,16, 4,20, 4,16,10, 8, 4,40, 4, 8,10,16, 4,20, 4,16,... 12,12,12,12,12,12,12,12,12,12,12,12,25,12,12,12,12,12,12,12,... ... - _R. J. Mathar_, Jan 21 2018
Links
- U. Abel, W. Awan, and V. Kushnirevych, A Generalization of the Gcd-Sum Function, J. Int. Seq. 16 (2013), #13.6.7.
- Peter H. van der Kamp, On the Fourier transform of the greatest common divisor, INTEGERS 13 (2013), A24.
Programs
-
Maple
p:=(a,n)->add(d*phi(n/d),d in divisors(gcd(a,n))): seq(seq(p(a,n-a),a=0..n-1),n=1..10);
Formula
The function can be written as a generalized Ramanujan sum: p(a,n) = Sum_{d|gcd(a,n)} d phi(n/d), where phi(n) denotes the totient function.
The rows of its table are equal to two of the diagonals: p(a,n) = p(n-a,n) = p(n+a,n).
f(n) = Sum_{k=1..n} p(r,k)/k = Sum_{k=1..n} c_k(r)/k * floor(n/k), where c_k(r) denotes Ramanujan's sum (A054533(r)).
Comments