This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227529 #49 Feb 16 2025 08:33:20 %S A227529 2,23,2357,23571113171 %N A227529 Copeland-Erdős constant primes (concatenation of entries (digits) of A033308 is prime). %C A227529 Primes obtained by taking consecutive decimal digits (starting with the first) of the Copeland-Erdős constant. %C A227529 The next terms are too big to display: a(5) = 235711131...6917017097 (353 digits), a(6) = 235711131...1701709719 (355 digits), ... %C A227529 See A227530 for an equivalent but more compact way of listing the terms, namely, by giving the number of digits of the constant A033308 that must be taken to get a prime. - _M. F. Hasler_, Apr 24 2017 %H A227529 Eric W. Weisstein, <a href="/A227529/b227529.txt">Table of n, a(n) for n = 1..7</a> %H A227529 Hans Havermann and Eric W. Weisstein (first 11 terms), <a href="/A227529/a227529_1.txt">Table of n, a(n) for n = 1..14</a> %H A227529 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Copeland-ErdosConstant.html">Copeland-Erdős Constant</a> %Y A227529 Cf. A227530 (number of decimal digits in the n-th Copeland-Erdős prime). %Y A227529 Cf. A019518, A069151. %Y A227529 Cf. A033308 (Decimal expansion of Copeland-Erdős constant: concatenate primes). %K A227529 base,nonn,hard %O A227529 1,1 %A A227529 _Eric W. Weisstein_, Jul 14 2013