cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227536 Irregular triangle read by rows, T(n,k) is the sum of base boxes of Pyramid arranged by n-boxes in k-th patterns.

This page as a plain text file.
%I A227536 #16 Apr 28 2016 12:42:00
%S A227536 2,3,0,3,4,4,5,4,5,5,6,5,6,6,5,7,6,6,7,6,7,6,7,7,8,7,6,8,7,7,8,7,8,8,
%T A227536 7,9,8,7,8,8,7,9,8,8,9,8,8,7,9,9,8,8,10,9,9,9,8,10,9,9,8,10,9,9,9,8,
%U A227536 10,10,9,9,8,10,10,9,9,9,11,10,10,9,9,8,10,10,9,10,9,9
%N A227536 Irregular triangle read by rows, T(n,k) is the sum of base boxes of Pyramid arranged by n-boxes in k-th patterns.
%C A227536 The rules for Pyramid arrangement are: (1) boxes shall be arranged in symmetrical forms; (2) each step width shall be 0.5 or 1, where boxes width = 1.
%C A227536 The number of patterns on each n-th step is A053260(n).
%H A227536 Kival Ngaokrajang, <a href="/A227536/a227536.jpg">Illustration for n = 42, k = 1..8</a>
%e A227536 For n = 3..6.
%e A227536    [1]    [1]    [1|2]     [1]     [1]       [1]
%e A227536   [2|3] [2|3|4] [3|4|5] [2|3|4|5]  [2]      [2|3]
%e A227536                                  [3|4|5]   [4|5|6]
%e A227536   T(3,1) = 2, T(4,1) = 3, T(5,k) = 0 {no pattern exist due to step width vilolations i.e. [0.5,2], [1.5,1] & [1,0,1]}, T(6,1) = 3, ...
%e A227536 The triangle begins:
%e A227536 n/k 1 2 3 4 5
%e A227536 3   2
%e A227536 4   3
%e A227536 5   0
%e A227536 6   3
%e A227536 7   4
%e A227536 8   4
%e A227536 9   5
%e A227536 10  4
%e A227536 11  5
%e A227536 12  5
%e A227536 13  6 5
%e A227536 14  6
%e A227536 15  6 5
%e A227536 16  7 6
%e A227536 17  6
%e A227536 18  7 6
%e A227536 19  7 6
%e A227536 20  7 7
%e A227536 21  8 7 6
%e A227536 22  8 7 7
%e A227536 23  8 7
%e A227536 24  8 8 7
%e A227536 25  9 8 7
%e A227536 26  8 8 7
%e A227536 27  9 8 8
%e A227536 28  9 8 8 7
%e A227536 29  9 9 8 8
%e A227536 30  9 9 8 8
%e A227536 31  10 9 9 9 8
%e A227536 ...
%e A227536 For n = 42, T(n,k) = 11, 11, 11, 10, 11, 10, 10, 9; see illustration in links.
%o A227536 (Small Basic)
%o A227536 x[0]=1
%o A227536 y[0]=1
%o A227536 for i = 1 To 12
%o A227536 a=math.Power(2,i-1)-2
%o A227536 b=math.Power(2,i)-2
%o A227536   For j = 1 To math.Power(2,i)
%o A227536    m=Math.Remainder(j,2)
%o A227536    k=math.Round(j/2+(1/2)*m)
%o A227536    y[j+b]=y[k+a]-m+2
%o A227536    x[j+b]=x[k+a]+y[j+b]
%o A227536   EndFor
%o A227536 EndFor
%o A227536 For n = 3 To 50
%o A227536   a[n]=0
%o A227536   c=1
%o A227536   For nn=1 To j+b
%o A227536     If n=x[nn] Then
%o A227536       a[n]=a[n]+1
%o A227536       aa[c]=y[nn]
%o A227536       c=c+1
%o A227536     Else
%o A227536       aa[c]=" "
%o A227536       EndIf
%o A227536   EndFor
%o A227536   For cc=1 To c
%o A227536     TextWindow.Write(aa[cc]+" ")
%o A227536   endfor
%o A227536   TextWindow.WriteLine(" ")
%o A227536 EndFor
%Y A227536 Cf. A053260.
%K A227536 nonn,tabf
%O A227536 3,1
%A A227536 _Kival Ngaokrajang_, Jul 15 2013