This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227536 #16 Apr 28 2016 12:42:00 %S A227536 2,3,0,3,4,4,5,4,5,5,6,5,6,6,5,7,6,6,7,6,7,6,7,7,8,7,6,8,7,7,8,7,8,8, %T A227536 7,9,8,7,8,8,7,9,8,8,9,8,8,7,9,9,8,8,10,9,9,9,8,10,9,9,8,10,9,9,9,8, %U A227536 10,10,9,9,8,10,10,9,9,9,11,10,10,9,9,8,10,10,9,10,9,9 %N A227536 Irregular triangle read by rows, T(n,k) is the sum of base boxes of Pyramid arranged by n-boxes in k-th patterns. %C A227536 The rules for Pyramid arrangement are: (1) boxes shall be arranged in symmetrical forms; (2) each step width shall be 0.5 or 1, where boxes width = 1. %C A227536 The number of patterns on each n-th step is A053260(n). %H A227536 Kival Ngaokrajang, <a href="/A227536/a227536.jpg">Illustration for n = 42, k = 1..8</a> %e A227536 For n = 3..6. %e A227536 [1] [1] [1|2] [1] [1] [1] %e A227536 [2|3] [2|3|4] [3|4|5] [2|3|4|5] [2] [2|3] %e A227536 [3|4|5] [4|5|6] %e A227536 T(3,1) = 2, T(4,1) = 3, T(5,k) = 0 {no pattern exist due to step width vilolations i.e. [0.5,2], [1.5,1] & [1,0,1]}, T(6,1) = 3, ... %e A227536 The triangle begins: %e A227536 n/k 1 2 3 4 5 %e A227536 3 2 %e A227536 4 3 %e A227536 5 0 %e A227536 6 3 %e A227536 7 4 %e A227536 8 4 %e A227536 9 5 %e A227536 10 4 %e A227536 11 5 %e A227536 12 5 %e A227536 13 6 5 %e A227536 14 6 %e A227536 15 6 5 %e A227536 16 7 6 %e A227536 17 6 %e A227536 18 7 6 %e A227536 19 7 6 %e A227536 20 7 7 %e A227536 21 8 7 6 %e A227536 22 8 7 7 %e A227536 23 8 7 %e A227536 24 8 8 7 %e A227536 25 9 8 7 %e A227536 26 8 8 7 %e A227536 27 9 8 8 %e A227536 28 9 8 8 7 %e A227536 29 9 9 8 8 %e A227536 30 9 9 8 8 %e A227536 31 10 9 9 9 8 %e A227536 ... %e A227536 For n = 42, T(n,k) = 11, 11, 11, 10, 11, 10, 10, 9; see illustration in links. %o A227536 (Small Basic) %o A227536 x[0]=1 %o A227536 y[0]=1 %o A227536 for i = 1 To 12 %o A227536 a=math.Power(2,i-1)-2 %o A227536 b=math.Power(2,i)-2 %o A227536 For j = 1 To math.Power(2,i) %o A227536 m=Math.Remainder(j,2) %o A227536 k=math.Round(j/2+(1/2)*m) %o A227536 y[j+b]=y[k+a]-m+2 %o A227536 x[j+b]=x[k+a]+y[j+b] %o A227536 EndFor %o A227536 EndFor %o A227536 For n = 3 To 50 %o A227536 a[n]=0 %o A227536 c=1 %o A227536 For nn=1 To j+b %o A227536 If n=x[nn] Then %o A227536 a[n]=a[n]+1 %o A227536 aa[c]=y[nn] %o A227536 c=c+1 %o A227536 Else %o A227536 aa[c]=" " %o A227536 EndIf %o A227536 EndFor %o A227536 For cc=1 To c %o A227536 TextWindow.Write(aa[cc]+" ") %o A227536 endfor %o A227536 TextWindow.WriteLine(" ") %o A227536 EndFor %Y A227536 Cf. A053260. %K A227536 nonn,tabf %O A227536 3,1 %A A227536 _Kival Ngaokrajang_, Jul 15 2013