This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227545 #54 Jul 21 2018 10:05:13 %S A227545 1,1,2,10,40,296,1936,17872,164480,1820800,21442816,279255296, %T A227545 3967316992,59837670400,988024924160,17009993230336,318566665977856, %U A227545 6177885274406912,129053377688043520,2786107670662021120,64136976817284448256,1525720008470138454016,38350749144768938770432 %N A227545 The number of idempotents in the Brauer monoid on [1..n]. %C A227545 The Brauer monoid is the set of partitions on [1..2n] with classes of size 2 and multiplication inherited from the partition monoid, which contains the Brauer monoid as a subsemigroup. The multiplication is defined in Halverson & Ram. %C A227545 These numbers were produced using the Semigroups (2.0) package for GAP 4.7. %C A227545 No general formula is known for the number of idempotents in the Brauer monoid. %H A227545 I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., <a href="http://arxiv.org/abs/1408.2021">Enumeration of idempotents in diagram semigroups and algebras</a>, arXiv preprint arXiv:1408.2021 [math.GR], 2014. %H A227545 T. Halverson, A. Ram, <a href="http://www.ms.unimelb.edu.au/~ram/Publications/2005EJCv26p869.pdf">Partition algebras</a>, European J. Combin. 26 (6) (2005) 869-921. %t A227545 nn = 44; ee = Table[0, nn+1]; ee[[1]] = 1; %t A227545 e[n_] := e[n] = ee[[n+1]]; %t A227545 For[n = 1, n <= nn, n++, ee[[n+1]] = Sum[Binomial[n-1, 2i-1] (2i-1)! e[n-2i], {i, 1, n/2}] + Sum[Binomial[n-1, 2i] (2i+1)! e[n-2i-1], {i, 0, (n-1)/2}] %t A227545 ]; %t A227545 ee (* _Jean-François Alcover_, Jul 21 2018, after _Joerg Arndt_ *) %o A227545 (GAP) for i in [1..11] do %o A227545 Print(NrIdempotents(BrauerMonoid(i)), "\n"); %o A227545 od; %o A227545 (PARI) %o A227545 N=44; E=vector(N+1); E[1]=1; %o A227545 e(n)=E[n+1]; %o A227545 { for (n=1, N, %o A227545 E[n+1]= %o A227545 sum(i=1,n\2,binomial(n-1,2*i-1)*(2*i-1)!*e(n-2*i)) + %o A227545 sum(i=0,(n-1)\2,binomial(n-1,2*i)*(2*i+1)!*e(n-2*i-1)) %o A227545 ); } %o A227545 print(E); %o A227545 \\ _Joerg Arndt_, Oct 12 2016 %Y A227545 Cf. A023997, A225797, A277379. %K A227545 nonn %O A227545 0,3 %A A227545 _James Mitchell_, Jul 15 2013 %E A227545 Terms a(13)-a(17) from _James East_, Dec 23 2013 %E A227545 More terms from _Joerg Arndt_, Oct 12 2016