This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227553 #22 Jun 24 2018 11:50:59 %S A227553 1,4,6,8,30,24,42,32,54,120,110,48,182,168,180,128,306,216,342,240, %T A227553 252,440,506,192,750,728,486,336,870,720,930,512,660,1224,1260,432, %U A227553 1406,1368,1092,960,1722,1008,1806,880,1620,2024,2162,768,2058,3000,1836 %N A227553 Number of solutions to x^2 - y^2 - z^2 == 1 (mod n). %C A227553 Conjecture: a(2) = 4; if s > 1 then a(2^s) = 2^(2s-1); if p == 1 (mod 4) then a(p^s) = (p+1)*p^(2s-1); if p == 3 (mod 4) then a(p^s) = (p-1)*p^(2s-1). %H A227553 Andrew Howroyd, <a href="/A227553/b227553.txt">Table of n, a(n) for n = 1..2500</a> %H A227553 L. Toth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Toth/toth12.html">Counting Solutions of Quadratic Congruences in Several Variables Revisited</a>, J. Int. Seq. 17 (2014) # 14.11.6. %t A227553 a[1] = 1; a[n_] := Sum[If[Mod[a^2-b^2-c^2, n] == 1, 1, 0], {a, n}, {b, n}, {c, n}]; Table[a[n], {n, 10}] %o A227553 (PARI) %o A227553 M(n,f)={sum(i=0, n-1, Mod(x^(f(i)%n), x^n-1))} %o A227553 a(n)={polcoeff(lift(M(n, i->i^2) * M(n, i->-(i^2))^2 ), 1%n)} \\ _Andrew Howroyd_, Jun 24 2018 %Y A227553 Cf. A208895, A086932, A089003, A060968, A087784. %K A227553 nonn,mult %O A227553 1,2 %A A227553 _José María Grau Ribas_, Jul 16 2013