cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227577 Square array read by antidiagonals, A(n,k) the numerators of the elements of the difference table of the Euler polynomials evaluated at x=1, for n>=0, k>=0.

This page as a plain text file.
%I A227577 #41 Feb 06 2021 21:49:49
%S A227577 1,-1,1,0,-1,0,1,1,-1,-1,0,1,1,1,0,-1,-1,-1,1,1,1,0,-1,-1,-5,-1,-1,0,
%T A227577 17,17,13,5,-5,-13,-17,-17,0,17,17,47,13,47,17,17,0,-31,-31,-107,-73,
%U A227577 -13,13,73,107,31,31,0,-31,-31,-355
%N A227577 Square array read by antidiagonals, A(n,k) the numerators of the elements of the difference table of the Euler polynomials evaluated at x=1, for n>=0, k>=0.
%C A227577 The difference table of the Euler polynomials evaluated at x=1:
%C A227577     1,   1/2,     0,    -1/4,     0,     1/2,      0,      -17/8, ...
%C A227577   -1/2, -1/2,   -1/4,    1/4,    1/2,   -1/2,   -17/8,      17/8, ...
%C A227577     0,   1/4,    1/2,    1/4;    -1,   -13/8,    17/4,     107/8, ...
%C A227577    1/4,  1/4,   -1/4,   -5/4,   -5/8,   47/8,    73/8,    -355/8, ...
%C A227577     0,  -1/2,    -1,     5/8    13/2,   13/4,  -107/2,    -655/8, ...
%C A227577   -1/2, -1/2,   13/8,   47/8,  -13/4, -227/4,  -227/8,    5687/8, ...
%C A227577     0,  17/8,   17/4,  -73/8, -107/2,  227/8,  2957/4,    2957/8, ...
%C A227577   17/8, 17/8, -107/8, -355/8,  655/8, 5687/8, -2957/8, -107125/8, ...
%C A227577 To compute the difference table, take
%C A227577     1,   1/2;
%C A227577   -1/2;
%C A227577 The next term is always half of the sum of the antidiagonals. Hence (-1/2 + 1/2 = 0)
%C A227577     1,   1/2,   0;
%C A227577   -1/2, -1/2;
%C A227577     0;
%C A227577 The first column (inverse binomial transform) lists the numbers (1, -1/2, 0, 1/4, ..., not in the OEIS; corresponds to A027641/A027642). See A209308 and A060096.
%C A227577 A198631(n)/A006519(n+1) is an autosequence. See A181722.
%C A227577 Note the main diagonal: 1, -1/2, 1/2, -5/4, 13/2, -227/4, 2957/4, -107125/8, .... (See A212196/A181131.)
%C A227577 This twice the first upper diagonal. The autosequence is of the second kind.
%C A227577 From 0, -1, the algorithm gives A226158(n), full Genocchi numbers, autosequence of the first kind.
%C A227577 The difference table of the Bernoulli polynomials evaluated at x=1 is (apart from signs) A085737/A085738 and its analysis by Ludwig Seidel was discussed in the Luschny link. - _Peter Luschny_, Jul 18 2013
%H A227577 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/ComputationAndAsymptoticsOfBernoulliNumbers">The computation and asymptotics of the Bernoulli numbers</a>.
%H A227577 OEIS Wiki, <a href="https://oeis.org/wiki/Autosequence">Autosequence</a>
%e A227577 Read by antidiagonals:
%e A227577     1;
%e A227577   -1/2,  1/2;
%e A227577     0,  -1/2,   0;
%e A227577    1/4,  1/4, -1/4, -1/4;
%e A227577     0,   1/4,  1/2,  1/4,   0;
%e A227577   -1/2, -1/2, -1/4,  1/4,  1/2,  1/2;
%e A227577     0,  -1/2, - 1,  -5/4,  -1,  -1/2,   0;
%e A227577   ...
%e A227577 Row sums: 1, 0, -1/2, 0, 1, 0, -17/4, 0, ... = 2*A198631(n+1)/A006519(n+2).
%e A227577 Denominators: 1, 1, 2, 1, 1, 1, 4, 1, ... = A160467(n+2)?
%p A227577 DifferenceTableEulerPolynomials := proc(n) local A,m,k,x;
%p A227577 A := array(0..n,0..n); x := 1;
%p A227577 for m from 0 to n do for k from 0 to n do A[m,k]:= 0 od od;
%p A227577 for m from 0 to n do A[m,0] := euler(m,x);
%p A227577    for k from m-1 by -1 to 0 do
%p A227577       A[k,m-k] := A[k+1,m-k-1] - A[k,m-k-1] od od;
%p A227577 LinearAlgebra[Transpose](convert(A, Matrix)) end:
%p A227577 DifferenceTableEulerPolynomials(7);  # _Peter Luschny_, Jul 18 2013
%t A227577 t[0, 0] = 1; t[0, k_] := EulerE[k, 1]; t[n_, 0] := -t[0, n]; t[n_, k_] := t[n, k] = t[n-1, k+1] - t[n-1, k]; Table[t[n-k, k] // Numerator, {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 18 2013 *)
%o A227577 (Sage)
%o A227577 def DifferenceTableEulerPolynomialsEvaluatedAt1(n) :
%o A227577     @CachedFunction
%o A227577     def ep1(n):          # Euler polynomial at x=1
%o A227577         if n < 2: return 1 - n/2
%o A227577         s = add(binomial(n,k)*ep1(k) for k in (0..n-1))
%o A227577         return 1 - s/2
%o A227577     T = matrix(QQ, n)
%o A227577     for m in range(n) :  # Compute difference table
%o A227577         T[m,0] = ep1(m)
%o A227577         for k in range(m-1,-1,-1) :
%o A227577             T[k,m-k] = T[k+1,m-k-1] - T[k,m-k-1]
%o A227577     return T
%o A227577 def A227577_list(m):
%o A227577     D = DifferenceTableEulerPolynomialsEvaluatedAt1(m)
%o A227577     return [D[k,n-k].numerator() for n in range(m) for k in (0..n)]
%o A227577 A227577_list(12)  # _Peter Luschny_, Jul 18 2013
%Y A227577 Cf. A164555/A027642 in A190339.
%K A227577 sign
%O A227577 0,25
%A A227577 _Paul Curtz_, Jul 16 2013
%E A227577 Corrected by _Jean-François Alcover_, Jul 17 2013