This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227603 #6 Nov 21 2016 16:08:32 %S A227603 1,32,8925,8285506,16104165970,51630369256916,237791136700913751, %T A227603 1441565191975184121126,10844768238749437970393066, %U A227603 97106818062816381529413045436,1003769793669980634048599763674485,11703712713157396870910671640141678850 %N A227603 Number of lattice paths from {6}^n to {0}^n using steps that decrement one component such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n. %H A227603 Vaclav Kotesovec, <a href="/A227603/b227603.txt">Table of n, a(n) for n = 0..40</a> %F A227603 Conjecture: a(n) ~ 2^(5/2) * 6^(6*n + 67/2) / (5^29 * Pi^(5/2) * n^(35/2)). - _Vaclav Kotesovec_, Nov 21 2016 %p A227603 b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop( %p A227603 i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l))) %p A227603 end: %p A227603 a:= n-> `if`(n=0, 1, b([6$n])): %p A227603 seq(a(n), n=0..12); %Y A227603 Row n=6 of A227578. %K A227603 nonn %O A227603 0,2 %A A227603 _Alois P. Heinz_, Jul 17 2013