This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227612 #30 Feb 16 2025 08:33:20 %S A227612 1,0,6,0,1,15,0,1,5,22,0,0,1,6,30,0,0,1,3,9,45,0,0,1,1,7,15,36,0,0,0, %T A227612 2,2,6,14,62,0,0,0,1,1,5,6,22,69,0,0,0,1,1,1,5,16,21,84,0,0,0,0,1,1,3, %U A227612 6,15,30,56,0,0,0,0,1,4,1,5,4,15,22,142,0,0,0,0,0,1,1,3,9,9,13,45,53 %N A227612 Table read by antidiagonals: Number of ways m/n can be expressed as the sum of three distinct unit fractions, i.e., m/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z and read by antidiagonals. %C A227612 The main diagonal is 1, 1, 1, 1, 1, 1, 1, ..., ; i.e., 1 = 1/2 + 1/3 + 1/6. %H A227612 G. C. Greubel, <a href="/A227612/b227612.txt">Table of n, a(n) for the first 50 rows, flattened</a> %H A227612 Christian Elsholtz, <a href="https://doi.org/10.1090/S0002-9947-01-02782-9">Sums Of k Unit Fractions</a>, Trans. Amer. Math. Soc. 353 (2001), 3209-3227. %H A227612 David Eppstein, <a href="http://www.ics.uci.edu/~eppstein/numth/egypt/intro.html">Algorithms for Egyptian Fractions</a> %H A227612 David Eppstein, <a href="http://library.wolfram.com/infocenter/Articles/2926/">Ten Algorithms for Egyptian Fractions</a>, Wolfram Library Archive. %H A227612 Ron Knott <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fractions/egyptian.html">Egyptian Fractions</a> %H A227612 Oakland University, <a href="http://www.oakland.edu/enp/">The Erdős Number Project</a> %H A227612 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a> %H A227612 <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a> %e A227612 m\n| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A227612 ---+------------------------------------------------------------ %e A227612 1 | 1 6 15 22 30 45 36 62 69 84 56 142 53 124 178 A227610 %e A227612 2 | 0 1 5 6 9 15 14 22 21 30 22 45 17 36 72 A227611 %e A227612 3 | 0 1 1 3 7 6 6 16 15 15 13 22 8 27 30 A075785 %e A227612 4 | 0 0 1 1 2 5 5 6 4 9 7 15 4 14 33 A073101 %e A227612 5 | 0 0 1 2 1 1 3 5 9 6 3 12 5 18 15 A075248 %e A227612 6 | 0 0 0 1 1 1 1 3 5 7 5 6 1 6 9 n/a %e A227612 7 | 0 0 0 1 1 4 1 2 2 2 2 9 6 6 7 n/a %e A227612 8 | 0 0 0 0 1 1 1 1 1 2 0 5 3 5 15 n/a %e A227612 9 | 0 0 0 0 0 1 1 3 1 1 0 3 1 2 7 n/a %e A227612 10 | 0 0 0 0 0 1 0 2 2 1 0 1 1 3 5 n/a %e A227612 . %e A227612 Antidiagonals are {1}, {0, 6}, {0, 1, 15}, {0, 1, 5, 22}, {0, 0, 1, 6, 30}, {0, 0, 1, 3, 9, 45}, ... %t A227612 f[m_, n_] := Length@ Solve[m/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Table[ f[n, m - n + 1], {m, 12}, {n, m, 1, -1}] %Y A227612 Cf. A002966, A073546, A227610 (1/n), A227611 (2/n), A075785 (3/n), A073101 (4/n), A075248 (5/n). %K A227612 nonn,tabl %O A227612 1,3 %A A227612 _Robert G. Wilson v_, Jul 17 2013