This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227614 #9 Feb 17 2017 02:33:49 %S A227614 1,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,5,5,7,8,9,11,13,14,17,19,21,25,28, %T A227614 32,37,42,47,55,61,69,78,88,98,112,124,140,157,176,196,221,245,274, %U A227614 305,340,377,420,465,517,573,634,702,777,858,949,1047,1154,1273 %N A227614 Number of partitions of n into distinct parts with perimeter n-2. %C A227614 The perimeter is the sum of all parts having less than two neighbors. %C A227614 a(n) counts all partitions of n into distinct parts where only part 2 has two neighbors. %H A227614 Alois P. Heinz, <a href="/A227614/b227614.txt">Table of n, a(n) for n = 6..1000</a> %F A227614 a(n) = A227344(n,n-2). %e A227614 a(6) = 1: [1,2,3]. %e A227614 a(11) = 1: [1,2,3,5]. %e A227614 a(17) = 2: [1,2,3,5,6], [1,2,3,11]. %e A227614 a(19) = 3: [1,2,3,5,8], [1,2,3,6,7], [1,2,3,13]. %e A227614 a(21) = 4: [1,2,3,7,8], [1,2,3,5,10], [1,2,3,6,9], [1,2,3,15]. %e A227614 a(23) = 5: [1,2,3,5,12], [1,2,3,6,11], [1,2,3,7,10], [1,2,3,8,9], [1,2,3,17]. %p A227614 b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<5, 0, %p A227614 b(n, i-1, 0)+`if`(i>n or t=2, 0, b(n-i, i-1, t+1)))) %p A227614 end: %p A227614 a:= n-> b(n-6, n-6, 0): %p A227614 seq(a(n), n=6..100); %t A227614 b[n_, i_, t_] := b[n, i, t] = If[n==0, 1, If[i<5, 0, b[n, i-1, 0] + If[i>n || t==2, 0, b[n-i, i-1, t+1]]]]; a[n_] := b[n-6, n-6, 0]; Table[a[n], {n, 6, 100}] (* _Jean-François Alcover_, Feb 17 2017, translated from Maple *) %Y A227614 Cf. A227344. %K A227614 nonn %O A227614 6,12 %A A227614 _Alois P. Heinz_, Jul 17 2013