A227628 Number of Lipschitz quaternions X such that X^2 == X (mod n).
1, 2, 14, 2, 32, 28, 58, 2, 110, 64, 134, 28, 184, 116, 448, 2, 308, 220, 382, 64, 812, 268, 554, 28, 752, 368, 974, 116, 872, 896, 994, 2, 1876, 616, 1856, 220, 1408, 764, 2576, 64, 1724, 1624, 1894, 268, 3520, 1108, 2258, 28, 2746, 1504
Offset: 1
Links
- C. J. Miguel and R. Serodio, On the Structure of Quaternion Rings over Zp, International Journal of Algebra, Vol. 5, 2011, no. 27, pp. 1313-1325.
Programs
-
Mathematica
cuaternios[n_] := Flatten[Table[{{ a, -b, d, -c}, {b, a, -c, -d}, {-d, c, a, -b}, {c, d, b, a}}, {a, n}, {b, n}, {c, n}, {d, n}], 3]; cuater[n_] := Length@Select[cuaternios[n], Mod[#.# - #, n] == 0*# &]; Table[cuater[n],{n,1,100}]