This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227652 #6 Jul 19 2013 07:04:43 %S A227652 1,144,518400,2073600,406425600,3657830400,14631321600,58525286400, %T A227652 526727577600,2106910310400,13168189440000,52672757760000, %U A227652 210691031040000,842764124160000,1769804660736000,1896219279360000,7584877117440000,30339508469760000 %N A227652 Perfect powers which are the product of distinct factorials. %C A227652 The first occurrences of nontrivial 2nd, 3rd,..., 6th powers are 3!*4!, 4!*7!*8!*9!, 2!*3!*4!*6!*7! * 13!*14!*15!*16!, 27!*26!*25!*24!*23! * 16!*15!*14!*12!*11!*9!*8!*3!*2! and 78!*77!*76!*75!*74!*73! * 37!*35!*34!*33!*32!*31! * 21!*20!*19!*14!*13! * 12!*9!*8!*7!*3!. %H A227652 Giovanni Resta, <a href="/A227652/b227652.txt">Table of n, a(n) for n = 1..2132</a> (terms < 10^100) %H A227652 Giovanni Resta, <a href="/A227652/a227652.txt">Decompositions for a(1)-a(2132)</a> %e A227652 14631321600 = 120960^2 = 8! * 9!. %t A227652 seqUpto[ub_] := Block[{ric, L={1}}, ric[m_, fr_] := Block[{mm, k = fr}, If[GCD @@ (Last /@ FactorInteger[m]) > 1, AppendTo[L, m]]; While[(mm = m*k!) <= ub, ric[mm, ++k]]]; ric[1, 2]; Union@L]; seqUpto[10^20] (* _Giovanni Resta_, Jul 19 2013 *) %Y A227652 Cf. A051761. %K A227652 nonn %O A227652 1,2 %A A227652 _Giovanni Resta_, Jul 19 2013