A227653 a(1) = least k such that 1/2 + 1/3 < H(k) - H(3); a(2) = least k such that H(a(1)) - H(3) < H(k) -H(a(1)), and for n > 2, a(n) = least k such that H(a(n-1)) - H(a(n-2)) > H(k) - H(a(n-1)), where H = harmonic number.
8, 21, 54, 138, 352, 897, 2285, 5820, 14823, 37752, 96148, 244872, 623645, 1588311, 4045140, 10302237, 26237926, 66823230, 170186624, 433434405, 1103878665, 2811378360, 7160069791, 18235396608, 46442241368, 118279949136, 301237536249, 767197263003
Offset: 1
Examples
The first two values (a(1),a(2)) = (8,21) match the beginning of the following inequality chain: 1/2 + 1/3 < 1/4 + ... + 1/8 < 1/9 + ... + 1/21 < ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 2; y = 3; a[1] = Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* A227653, Peter J. C. Moses, Jul 12 2013 *)
Formula
a(n) = A077849(n+1) (conjectured).
a(n) = 3*a(n-1) - a(n-2) - a(n-4) (conjectured).G.f.: (8 - 3 x - x^2 - 3 x^3)/(1 - 3 x + x^2 + x^4) (conjectured).
Comments