This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227690 #25 Mar 18 2023 08:37:31 %S A227690 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,2,1,1,1,1,4,3,4,1,1,1,1,5,6,6,5, %T A227690 1,1,1,1,9,10,13,10,9,1,1,1,1,12,21,39,39,21,12,1,1,1,1,21,39,115,77, %U A227690 115,39,21,1,1,1,1,30,82,295,521,521,295,82,30,1,1 %N A227690 Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles reduced for symmetry; square array A(n,k), n >= 0, k >= 0, read by antidiagonals. %H A227690 Christopher Hunt Gribble, <a href="/A227690/b227690.txt">Antidiagonals n = 0..15, flattened</a> %H A227690 Christopher Hunt Gribble, <a href="/A227690/a227690.cpp.txt">C++ program</a> %e A227690 Square array A(n,k) begins: %e A227690 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A227690 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A227690 1, 1, 2, 2, 4, 5, 9, 12, 21, ... %e A227690 1, 1, 2, 3, 6, 10, 21, 39, 82, ... %e A227690 1, 1, 4, 6, 13, 39, 115, 295, 861, ... %e A227690 1, 1, 5, 10, 39, 77, 521, 1985, 8038, ... %e A227690 1, 1, 9, 21, 115, 521, 1494, 15129, 83609, ... %e A227690 1, 1, 12, 39, 295, 1985, 15129, 56978, 861159, ... %e A227690 1, 1, 21, 82, 861, 8038, 83609, 861159, 4495023, ... %e A227690 ... %e A227690 A(4,3) = 6 because there are 6 ways to tile a 3 X 4 rectangle by subsquares, reduced for symmetry, i.e., where rotations and reflections are not counted as distinct: %e A227690 ._____ _. ._______. ._______. %e A227690 | |_| | | | | |_|_| %e A227690 | |_| |___|_ _| |___| | %e A227690 |_____|_| |_|_|_|_| |_|_|___| %e A227690 ._______. ._______. ._______. %e A227690 | |_|_| |_| |_| |_|_|_|_| %e A227690 |___|_|_| |_|___|_| |_|_|_|_| %e A227690 |_|_|_|_| |_|_|_|_| |_|_|_|_| %Y A227690 Main diagonal: A224239. %Y A227690 Columns 1-10: A000012, A001224, A359019, A359020, A359021, A359022, A359023, A359024, A359025, A359026. %Y A227690 Cf. A219924, A224697. %K A227690 nonn,tabl %O A227690 0,13 %A A227690 _Christopher Hunt Gribble_, Jul 19 2013