A227716 Triangle read by rows: Number of (2n+1)-step self-avoiding walks on diamond lattice ending at point with x = 2k+1.
2, 10, 8, 74, 56, 32, 518, 464, 288, 128, 3934, 3520, 2656, 1408, 512, 29914, 27768, 21920, 14336, 6656, 2048, 232094, 217316, 181456, 128256, 74240, 30720, 8192, 1812890, 1719616, 1475172, 1118592, 716288, 372736, 139264, 32768, 14277886, 13633972, 11989800, 9480048
Offset: 0
Examples
Initial rows (paths of length 1, 3, 5, ...): { 2 }; { 10, 8 }; { 74, 56, 32 }; { 518, 464, 288, 128 }.
Links
- Bert Dobbelaere, Table of n, a(n) for n = 0..135 (terms 0..77 from Joseph Myers)
- J. L. Martin, The exact enumeration of self-avoiding walks on a lattice, Proc. Camb. Phil. Soc., 58 (1962), 92-101.
Comments