cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227721 Floor(1/s(n)), where s(n) = (2n+1)/(2n+2) - n*log((n+1)/n).

Original entry on oeis.org

17, 44, 83, 134, 197, 272, 359, 458, 569, 692, 827, 974, 1133, 1304, 1487, 1682, 1889, 2108, 2339, 2582, 2837, 3104, 3383, 3674, 3977, 4292, 4619, 4958, 5309, 5672, 6047, 6434, 6833, 7244, 7667, 8102, 8549, 9008, 9479, 9962, 10457, 10964, 11483, 12014, 12557
Offset: 1

Views

Author

Clark Kimberling, Jul 22 2013

Keywords

Comments

That s(n) > 0 for n >=1 follows from the chain 1 < log 2 < 3/4 < 2 log 3/2 < 5/6 < 3 log 4/3 < 7/8 < 4 log 5/4 < ... ; i.e., n log((n+1)/n) - (2n-1)/(2n) > 0 and (2n+1)/(2n+2) - n log((n+1)/n) > 0. For the first, closeness to 0 is indicated by A227719 and A227720, and for the second, by A227721 and a sequence which possibly equals A094159. Conjecture: the four sequences are linearly recurrent.

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = (2 n + 1)/(2 n + 2) - n*Log[1 + 1/n]
    Table[Floor[1/s[n]], {n, 1, 100}] (* A227721 *)
    Table[Round[1/s[n]], {n, 1, 100}] (* conjecture: A094159 *)

Formula

a(n) = 2 + 9*n + 6*n^2 (conjectured).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) (conjectured).
G.f.: (-17 + 7 x - 2 x^2)/(-1 + x)^3 (conjectured).