cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227722 Smallest Boolean functions from small equivalence classes (counted by A000231).

This page as a plain text file.
%I A227722 #29 Dec 16 2017 22:43:34
%S A227722 0,1,3,5,6,7,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,51,53,54,
%T A227722 55,60,61,63,85,86,87,90,91,95,102,103,105,107,111,119,123,125,126,
%U A227722 127,255,257,258,259,260,261,262,263,264,265,266,267
%N A227722 Smallest Boolean functions from small equivalence classes (counted by A000231).
%C A227722 Two Boolean functions belong to the same small equivalence class (sec) when they can be expressed by each other by negating arguments. E.g., when f(p,~q,r) = g(p,q,r), then f and g belong to the same sec. Geometrically this means that the functions correspond to hypercubes with 2-colored vertices that are equivalent up to reflection (i.e., exchanging opposite hyperfaces).
%C A227722 Boolean functions correspond to integers, so each sec can be denoted by the smallest integer corresponding to one of its functions. There are A000231(n) small equivalence classes of n-ary Boolean functions. Ordered by size they form the finite sequence A_n. It is the beginning of A_(n+1) which leads to this infinite sequence A.
%H A227722 Tilman Piesk, <a href="/A227722/b227722.txt">Table of n, a(n) for n = 0..9999</a>
%H A227722 Tilman Piesk, <a href="http://en.wikiversity.org/wiki/Equivalence_classes_of_Boolean_functions#sec">Small equivalence classes of Boolean functions</a>
%H A227722 Tilman Piesk, <a href="http://commons.wikimedia.org/wiki/File:Boolean_functions_like_0110_1000.svg">sec of 3-ary functions</a> corresponding to a(12) = 22 = 0x16
%H A227722 Tilman Piesk, <a href="http://pastebin.com/kdZBTYnU">MATLAB code used for the calculation</a>
%H A227722 <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a>
%F A227722 a( A000231 - 1 ) = a(2,6,45,4335...) = 3,15,255,65535... = A051179
%F A227722 a( A000231 )     = a(3,7,46,4336...) = 5,17,257,65537... = A000215
%e A227722 The 16 2-ary functions ordered in A000231(2) = 7 small equivalence classes:
%e A227722 a     a(n)    Boolean functions, the left one corresponding to a(n)
%e A227722 0      0      0000
%e A227722 1      1      0001, 0010, 0100, 1000
%e A227722 2      3      0011, 1100
%e A227722 3      5      0101, 1010
%e A227722 4      6      0110, 1001
%e A227722 5      7      0111, 1011, 1101, 1110
%e A227722 6     15      1111
%Y A227722 Cf. A227723 (subsequence that does the same thing for big equivalence classes).
%Y A227722 Cf. A000231, A051179, A000215.
%K A227722 nonn
%O A227722 0,3
%A A227722 _Tilman Piesk_, Jul 22 2013