cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227728 a(1) = greatest k such that H(k) - H(2) < 1/1 + 1/2; a(2) = greatest k such that H(k) - H(a(1)) < H(a(1)) - H(2); and for n>2, a(n) = greatest k such that H(k) - H(a(n-1)) < H(a(n-1)) - H(a(n-2)), where H = harmonic number.

Original entry on oeis.org

10, 43, 179, 740, 3054, 12599, 51971, 214376, 884278, 3647546, 15045706, 62061794, 255997704, 1055960840, 4355715996, 17966823308, 74111062350, 305699536774, 1260975134078, 5201376179830, 21455073484758, 88499689759294, 365050956038686, 1505792854949114
Offset: 1

Views

Author

Clark Kimberling, Jul 29 2013

Keywords

Comments

Suppose that x and y are positive integers and that x <= y. Let c(1) = y and c(2) = greatest k such that H(k) - H(y) < H(y) - H(x); for n > 2, let c(n) = greatest such that H(k) - H(c(n-1)) < H(c(n-1)) - H(c(n-2)). Then 1/x + ... + 1/c(1) > 1/(c(1)+1) + ... + 1/(c(2)) > 1/(c(2)+1) + ... + 1/(c(3)) > ... The decreasing sequences H(c(n)) - H(c(n-1)) and c(n)/c(n-1) converge. For what choices of (x,y) is the sequence c(n) linearly recurrent?
For A224868, (x,y) = (1,2) and a(n) = c(n+1) for n >= 1. It appears that the sequence a(n) is linearly recurrent with signature (5,-4,2,-2,2,-2,2,-2,2,-2). See A227729 and A225815 for limits of the sequences H(c(n)) - H(c(n-1)) and c(n)/c(n-1).

Examples

			The first three values (a(1),a(2),a(3)) = (10,43,179) match the beginning of the following inequality chain (and partition of the harmonic numbers): 1/1 + 1/2 > 1/3 + 1/4 + ... + 1/10 > 1/11 + ... + 1/43 > 1/44 + ... + 1/179 > ...
		

Crossrefs

Programs

  • Mathematica
    z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 1; y = 2; a[1] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* A227728 *)
    N[Table[h[a[t]] - h[a[t - 1]], {t, 2, z, 25}], 50]  (* A227729 *)
    N[Table[a[n]/a[n - 1], {n, 2, z, 25}], 50]  (* A225815 *)

Formula

a(n) = 5*a(n-1) - 4*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + 2*a(n-9) - 2*a(n-10) (conjectured).
Empirical g.f.: -x*(4*x^9-4*x^8+3*x^7-4*x^6+3*x^5-4*x^4+3*x^3-4*x^2+7*x-10) / ((x-1)*(2*x^9+2*x^7+2*x^5+2*x^3+4*x-1)). - Colin Barker, Mar 23 2015

Extensions

Definition corrected by Clark Kimberling, Jan 14 2017