cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227730 Doubly 2-densely divisible numbers.

This page as a plain text file.
%I A227730 #10 Nov 30 2014 13:25:31
%S A227730 1,2,4,8,12,16,24,32,36,48,60,64,72,80,96,108,112,120,128,144,160,168,
%T A227730 180,192,216,224,240,252,256,288,300,320,324,336,360,384,396,400,420,
%U A227730 432,448,480,504,512,528,540,560,576,600,640,648,660,672,704,720,756,768,784
%N A227730 Doubly 2-densely divisible numbers.
%C A227730 Numbers n such that for each d | n, there is some 2-densely divisible (A174973) number d' such that d/2 < d' <= d.
%H A227730 Charles R Greathouse IV, <a href="/A227730/b227730.txt">Table of n, a(n) for n = 1..10000</a>
%H A227730 Terence Tao, <a href="http://terrytao.wordpress.com/2013/07/07/the-distribution-of-primes-in-doubly-densely-divisible-moduli/">The distribution of primes in doubly densely divisible moduli</a>
%o A227730 (PARI) dense(n,k)=my(d=divisors(n)); for(i=2, #d, if(d[i]>k*d[i-1], return(0))); 1
%o A227730 is(n)=my(d=select(k->dense(k,2),divisors(n))); if(!#d||2*d[#d]<n,return(0)); for(i=2, #d, if(d[i]>2*d[i-1], return(0))); 1
%Y A227730 Cf. A227731, A174973.
%K A227730 nonn
%O A227730 1,2
%A A227730 _Charles R Greathouse IV_, Jul 23 2013