This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227734 #18 Dec 26 2015 02:21:47 %S A227734 84,120,132,168,195,228,231,255,260,264,276,280,308,312,340,372,399, %T A227734 408,420,435,440,455,456,483,516,520,532,552,555,564,580,595,615,616, %U A227734 627,644,651,660,663,680,696,708,715,728,740,744,759,760,795,804,820,836,840 %N A227734 Negative fundamental discriminants with noncyclic class groups (negated). %C A227734 Absolute values of discriminants of imaginary quadratic fields whose class groups are noncyclic. %C A227734 The n-th line of the linked file gives the invariant factor decomposition of the class group corresponding to the fundamental discriminant -a(n). %H A227734 Rick L. Shepherd, <a href="/A227734/b227734.txt">Table of n, a(n) for n = 1..10000</a> %H A227734 Rick L. Shepherd, <a href="http://libres.uncg.edu/ir/uncg/f/Shepherd_uncg_0154M_11099.pdf">Binary quadratic forms and genus theory</a>, Master of Arts Thesis, University of North Carolina at Greensboro, 2013. %H A227734 Rick L. Shepherd, <a href="/A227734/a227734_1.txt">Invariant factor decompositions for corresponding class groups</a> %H A227734 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a> %e A227734 The fundamental discriminant -231 = (-3)(-7)(-11) has class group isomorphic to Z_6 x Z_2. The fundamental discriminant -420 = (-7)(-4)(-3)(5) has class group isomorphic to Z_2 x Z_2 x Z_2. The fundamental discriminant (also prime discriminant) -3299 has class group isomorphic to Z_9 x Z_3. The fundamental discriminant -3896 = 8(-147) has class group isomorphic to Z_12 x Z_3. Here and in general for fundamental discriminants, the 2-rank of each class group is the number of prime discriminant factors minus one. %o A227734 (PARI) %o A227734 {default(realprecision, 100); %o A227734 terms_wanted = 100000; %o A227734 t = 0; k = 0; %o A227734 while(t < terms_wanted, %o A227734 k++; %o A227734 if(isfundamental(-k), %o A227734 F = bnfinit(quadpoly(-k, x), , [6, 6, 4]); %o A227734 if(bnfcertify(F) <> 1, %o A227734 print("Certify failed for ", -k, " -- exiting (", %o A227734 t, " terms found)"); break); %o A227734 if(length(F.clgp.cyc) > 1, %o A227734 t++; %o A227734 write("b227734.txt", t, " ", k); %o A227734 write("a227734.txt", t, " ", F.clgp.cyc))))} %Y A227734 Cf. A003657, A003658, A001221, A225365. %K A227734 nonn %O A227734 1,1 %A A227734 _Rick L. Shepherd_, Jul 28 2013