A227735 Negative fundamental discriminants with cyclic class groups of composite order (negated).
39, 55, 56, 68, 87, 95, 104, 111, 116, 119, 136, 143, 152, 155, 159, 164, 183, 184, 199, 203, 212, 215, 219, 239, 244, 247, 248, 259, 287, 291, 292, 295, 296, 299, 303, 319, 323, 327, 328, 335, 339, 344, 355, 356, 367, 371, 376, 388, 391, 395, 404, 407, 411
Offset: 1
Keywords
Examples
The fundamental discriminant -39 = (-3)(13) has a cyclic class group of order 4, which is composite (but not squarefree). The fundamental discriminant -104 = (-8)(13) has a cyclic class group of order 6, which is composite. The fundamental discriminant -239 is itself a prime discriminant with cyclic class group of order 15, also composite (but not divisible by 2).
Links
- Rick L. Shepherd, Table of n, a(n) for n = 1..10000
- Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
- Rick L. Shepherd, Orders of corresponding class groups
- Index entries for sequences related to quadratic fields
Crossrefs
Cf. A227734.
Programs
-
PARI
{default(realprecision, 100); terms_wanted = 10000; t = 0; k = 0; while(t < terms_wanted, k++; if(isfundamental(-k), F = bnfinit(quadpoly(-k, x), , [6, 6, 4]); if(bnfcertify(F) <> 1, print("Certify failed for ", -k, " -- exiting (", t, " terms found)"); break); if(length(F.clgp.cyc) == 1 && isprime(F.clgp.cyc[1]) == 0, t++; write("b227735.txt", t, " ", k); write("a227735.txt", t, " ", F.clgp.cyc[1]))))}
Comments