This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227752 #21 Jun 03 2018 03:45:26 %S A227752 1,1,1,1,1,0,2,1,1,1,0,1,2,1,2,1,1,1,0,2,0,0,0,1,2,2,0,2,2,1,2,1,1,1, %T A227752 1,2,1,0,1,2,1,0,0,0,1,0,1,1,2,2,1,3,1,0,1,2,2,2,1,2,2,1,2,1,1,1,1,2, %U A227752 1,0,1,2,2,0,0,0,2,0,2,2,1,0,0,0,0,0,0 %N A227752 a(n) is the number of occurrences of n in A226062. %H A227752 Antti Karttunen, <a href="/A227752/b227752.txt">Table of n, a(n) for n = 0..319</a> %F A227752 In the following formula [] stands for Iverson brackets. Essentially we are just naively counting the integers which A226062 maps to n. A000225 is the guaranteed upper limit for the runlength codes for the partitions of size n: %F A227752 a(n) = Sum_{i=0..A000225(A227183(n))} [A226062(i)==n]. %F A227752 a(n) = Sum_{i=A227368(A227183(n))..A000225(A227183(n))} [A226062(i)==n]. [This is slightly faster if somebody invents a clever formula for the lower limit A227368.] %o A227752 (Scheme, a naive implementation which always begins search from zero) %o A227752 (definec (A227752 n) (add (lambda (k) (if (= n (A226062 k)) 1 0)) 0 (A000225 (A227183 n)))) %o A227752 ;; The following function implements sum_{i=lowlim..uplim} intfun(i) %o A227752 (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i))))))) %Y A227752 A227753 gives the positions of zeros. %K A227752 nonn %O A227752 0,7 %A A227752 _Antti Karttunen_, Jul 26 2013