cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227784 Least number of fourth powers which add to -1 mod n.

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 2, 7, 2, 4, 2, 3, 2, 2, 4, 15, 1, 2, 2, 4, 2, 2, 2, 7, 4, 2, 2, 3, 3, 4, 2, 15, 2, 1, 4, 3, 2, 2, 2, 7, 1, 2, 2, 3, 4, 2, 2, 15, 2, 4, 2, 3, 2, 2, 4, 7, 2, 3, 2, 4, 2, 2, 2, 15, 4, 2, 2, 3, 2, 4, 2, 7, 1, 2, 4, 3, 2, 2, 2, 15, 2, 1, 2, 3, 4, 2, 3, 7, 1, 4, 2
Offset: 1

Views

Author

Keywords

Comments

Parnami, Agrawal, & Rajwade proved (1981, Theorem 1) that, for a prime p > 29, a(p) = 1 if p = 1 mod 8 and otherwise a(p) = 2.
Conjecture: a(n) = 15 if n = 9 mod 16 and a(n) = 7 if n = 8 mod 16, otherwise a(n) <= 4. (The associated lower bounds are obvious.)

References

  • J. C. Parnami, M. K. Agrawal, and A. R. Rajwade, On the 4-power Stufe of a field, Rendiconti del Circolo Matematico di Palermo (2) 30:2 (1981), pp. 245-254.

Crossrefs

Programs

  • PARI
    a(n)=if(n==1,return(0)); if(n>29 && isprime(n), return(if(n%8>1, 2, 1))); my(N,cur,new,k=1);for(i=1,n\2,cur=N=bitor(1<<(i^4%n),N));while(!bittest(cur,n-1),new=0;for(i=1,n\2,t=cur<<(i^4%n);t=bitor(bitand(t,(1<>n);new=bitor(new,t));k++;cur=new);k

Formula

a(n) <= A002377(n-1) <= 19.
a(n) = 1 if and only if n > 1 is in A192453.