This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A227794 #34 Aug 02 2025 06:51:15 %S A227794 3,113,907,3019,3631,5281,6361,7853,8171,11689,14957,16741,17203, %T A227794 20611,33329,36643,38707,63347,68813,96211,115811,126923,128189, %U A227794 129461,169093,172021,234139,241051,248063,301907,319691,340049,367453,380459,382649,387047,448883 %N A227794 Primes of the form floor(Pi*k^2). %H A227794 Georg Fischer, <a href="/A227794/b227794.txt">Table of n, a(n) for n = 1..1500</a> [first 162 terms from _K. D. Bajpai_] %e A227794 a(2)=113: Pi*6^2 = 113.09 and 113 is prime. %e A227794 a(3)=907: Pi*17^2 = 907.92 and 907 is prime. %p A227794 select(isprime, {seq(floor(Pi*n^2),n=1..1000)}); [corrected by _Georg Fischer_, Sep 27 2024] %t A227794 Select[Floor[Pi*Range[400]^2],PrimeQ] (* _Harvey P. Dale_, Dec 18 2016 *) %o A227794 (PARI) is(n)=my(r=sqrtint((n+1)\Pi)); Pi*r^2>n && isprime(n) \\ _Charles R Greathouse IV_, Sep 23 2013 %Y A227794 Cf. A066643 (floor(Pi*n^2)), A067559 (n that produce primes). %K A227794 nonn %O A227794 1,1 %A A227794 _K. D. Bajpai_, Sep 23 2013