cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227798 Number of composites removed in each step of the Sieve of Eratosthenes for 10^9.

This page as a plain text file.
%I A227798 #18 Mar 01 2018 02:32:00
%S A227798 499999999,166666666,66666666,38095237,20779220,15984016,11282834,
%T A227798 9501331,7435826,5640969,5095068,4131143,3627360,3374293,3015292,
%U A227798 2616982,2306411,2192860,1963654,1825278,1750219,1595163,1499127,1381337,1253379,1191536
%N A227798 Number of composites removed in each step of the Sieve of Eratosthenes for 10^9.
%C A227798 a(n) = the number of composites <= 10^9 for which the n-th prime is the least prime factor.
%C A227798 pi(sqrt(10^9)) = the number of terms of this sequence.
%C A227798 The sum of a(n) for n = 1..3401 = A000720(10^9) + A065855(10^9).
%H A227798 Eric F. O'Brien, <a href="/A227798/b227798.txt">Table of n, a(n) for n = 1..3401</a>
%e A227798 a(1) = 10^9 \ 2 - 1.
%e A227798 a(2) = 10^9 \ 3 - 10^9 \ (2*3) - 1
%e A227798 a(3) = 10^9 \ 5 - 10^9 \ (2*5) - 10^9 \ (3*5) + 10^9 \ (2*3*5) - 1
%e A227798 a(4) = 10^9 \ 7 - 10^9 \ (2*7) - 10^9 \ (3*7) - 10^9 \ (5*7) + 10^9 \ (2*3*7) + 10^9 \ (2*5*7) + 10^9 \ (3*5*7) - 10^9 \ (2*3*5*7) - 1.
%Y A227798 Cf. A133228, A145538-A145540, A227155, A227797, A227799, A145532-A145537.
%K A227798 nonn,fini,full
%O A227798 1,1
%A A227798 _Eric F. O'Brien_, Jul 31 2013